Study Card

<table>
<thead>
<tr>
<th>Module-No.</th>
<th>Semester</th>
<th>Teaching staff</th>
<th>Module-coordinator (designated each sem.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geo_M208</td>
<td>2</td>
<td>Prof. Dr.-Ing. Dell Egge, Prof. Dr.-Ing. Volker Böder</td>
<td>Prof. Dr.-Ing. Volker Böder</td>
</tr>
</tbody>
</table>

Module name

- **Navigation**

Subject areas

- Hydrography

Duration/sem.

- 1 Semester

Frequency of offering

- each SuSe

Type (C/CE/E) C

Emphasis in overall grade / %

- 4.16 %

Workload / h.

- 141

Self-study / h.

- 85

Contact time / h.

- 56

Contact hours / week (SWS)

- 4 + 0

Type of examination

- oral (graded)

Previous knowledge / Conditions for participation (in form and content)

-

Educational aims of the module (Learning objectives/results, skills)

- **Basic understanding for navigation and applications at sea and using of electronic charts.**

Course contents

Nautical Science:

Law of marine traffic. Law of coastal traffic: general rules of behavior, principles of giving way, light setting, acoustic warning signals, and travel in fog. Regulations for navigation in waterways.

Radar: as navigational aid and for collision avoidance. Principle of radar positioning, display types, principle of display evaluation.

Seamanship. Maneuver techniques: steering elements and propulsion systems, import and properties in maneuvering, special maneuvers in narrow and flat waterways, in heavy weather, and in man-over-board situation.

Security technology.

Traffic Control Systems:

Bearing sensors: Radio direction finders. Sensors for distance and bearing: Radar: Display types, composition and function, resolution, limitations and display errors, radar as navigational aid, radar as collisions avoidance, ARPA devices.

Course sensors: Magnetic compass, gyro compass, electronic sensors, course information from position sensors, function and limitations.

Sensors for water depth: sounders, echo sounders, function and limitations.

Speed sensors: logs, general, hydro-mechanical logs, electromagnetic logs, Doppler sonar.

Position sensors: hyperbolic (e.g. Loran C and similar), pseudorange methods (GPS), improvement of procedures, differential methods (e.g. DGPS).

Integrating procedures, ECDIS, automatic guidance. Special procedures.

Electronic Chart Display:

An imaginary trip with ECDIS. On-board components of the electronic chart display. Differences between ECDIS, ECS, RCDS. Data: information and data, geo-reference, forms of display, raster and vector map, data structures, display of attribute information, realization of space relationship in vector charts. Hydrographic aspects: quality aspects of hydrographic data, necessity of continuous corrections, source-dependent quality aspects, quality assurance.

Transition from data to chart functions. Integration with other navigation systems.

Visit to the Federal Maritime and Hydrographic Agency of Germany (BSH) and to firms.

Integrated Navigation:

Teaching and learning methods

- Taught seminars

Condition for awarding the ECTS-credits

- Oral examination

Oral examination

-

Additional Information

-

Latest update: 06/2011