

Module Guide

Resource Efficiency in Architecture and Planning (REAP)

BSPO-MSc-RFAP-23

Contents

Structure of the Study Program3	Project II (Joint Project)26
Brief Profile4	Climate Responsive Architecture and28
Kurzbeschreibung5	Planning
Module Plan6	Technologies for Sustainable Water Resource
Gruppengrößen8	Management30
Group sizes8	Technologies for Sustainable32
Module Descriptions9	Material Cycles32
Facets of Sustainability10	Economics and Planning of Technical Urban
Research Methods and Statistics12	Infrastructure Systems
Legal and Economic Instruments of14	Cost-Benefit Analysis of Technical Infrastructure Projects36
Environmental Policy14	Material Flow Analysis and Life Cycle Assessment 38
Methods of Integrative Urban Planning16	General Elective40
Project I (Joint Project)18	Project III (Joint Project)42
Urban Material Cycles (UMC)20	Thesis44
Urban Energy Flows22	[Q] STUDIES46
Urban Water Cycle24	BASICS Project Management48

Structure of the Study Program

Brief Profile

German Version below

The Master of Science Degree Programme REAP – "Resource Efficiency in Architecture and Planning" is an international and interdisciplinary programme at HafenCity University Hamburg that is concerned with sustainable planning on different scales.

It aims to enable participants to promote sustainable architecture and urban development in different geographical and cultural settings.

Lectures and seminars are grouped around the central project work: real-time, real-world case studies, in which students, with help and guidance from faculty, develop recommendations and solutions for applied tasks.

The REAP programme consists of 17 study modules taught over 2 academic years. During their studies, REAP students will obtain knowledge and skills within the following areas:

- Sustainability
- Water, Material and Energy Cycles in the city
- Resource efficient urban technologies and infrastructure
- Economics and administration of buildings and urban services
- Legal and policy instruments
- Urban Planning on different scales
- Skills development: dimensioning, preception, assessment and decision making in the field of sustainable resource technologies
- Research methods and decision support techniques

REAP is not an architectural design course.

The master course is not focused on a single discipline -it is interdisciplinary and follows an integrative and multidimensional planning approach.

Kurzbeschreibung

Der Masterstudiengang REAP - "Ressourceneffizienz in Architektur und Planung" ist ein internationaler und interdisziplinärer Studiengang an der HafenCity Universität Hamburg, der sich mit nachhaltiger Planung auf verschiedenen Ebenen beschäftigt.

Ziel ist es, die Teilnehmer zu befähigen, nachhaltige Architektur und Stadtentwicklung in unterschiedlichen geografischen und kulturellen Kontexten zu fördern.

Die Vorlesungen und Seminare gruppieren sich um die zentrale Projektarbeit: reale Fallstudien, in denen die Studierenden mit Hilfe und unter Anleitung der Dozenten Empfehlungen und Lösungen für angewandte Aufgaben entwickeln.

Das REAP-Programm besteht aus 17 Studienmodulen, die über 2 Studienjahre hinweg unterrichtet werden. Während ihres Studiums erwerben die REAP-Studenten Kenntnisse und Fähigkeiten in den folgenden Bereichen:

- Nachhaltigkeit
- Wasser-, Material- und Energiekreisläufe in der Stadt
- Ressourceneffiziente städtische Technologien und Infrastruktur
- Wirtschaft und Verwaltung von Gebäuden und städtischen Dienstleistungen
- Rechtliche und politische Instrumente
- Stadtplanung auf verschiedenen Ebenen
- Kompetenzentwicklung: Dimensionierung, Wahrnehmung, Bewertung und Entscheidungsfindung auf dem Gebiet der nachhaltigen Ressourcentechnologien
- Forschungsmethoden und Techniken zur Entscheidungsfindung

REAP ist kein Studiengang für Architekturentwurf.

Der Masterstudiengang ist nicht auf eine einzelne Disziplin ausgerichtet - er ist interdisziplinär und verfolgt einen integrativen und multidimensionalen Planungsansatz.

Module Plan

The corresponding examination regulations are published at:

https://www.hcu-hamburg.de/studierendenservices/pruefungsamt/studien-und-pruefungsordnungen

M.Sc. (REAP) Year 1

Semester 1	Semester 2
Project I (5 CP)	Project II (10 CP)
Facets of Sustai- nability	
(5 CP)	
Methods of Inte- grative and Urban Planning	Urban Material Cycles
(5 CP)	(5 CP)
Legal and Econo- mic Instruments	Urban Energy Flows
(5 CP)	(5 CP)
Research Methods and Statics	Urban Water Cycles
(5 CP)	(5 CP)
Cross-Curricular Programme	Cross-Curricular Programme
(5 CP)	(5 CP)

M.Sc. (REAP) Year 2

Semester 3		Semester 4
Project III (10 CP)	Thesis Project (30 CP)	
Plus 2 Modules from Block 1: Resources, Technolo- gies and Environment	each block Block 2: Resources, Institutions and Instruments	
Climate Responsive Architecture and Planning	Economics and Planning of Tech- nical Urban Infras- tructure Systems (5 CP)	
Technologies for Sustainable Water Resource Manage- ment (5 CP)	Cost-Benefit Analysis of Technical Urban Infrastructure Systems (5 CP)	
Technologies for Sustainable Water Resource Manage- ment (5 CP)	Material Flow Analysis and Life Cycle Assesment (5 CP)	
or instead of one module	or instead of one module	
General Elective (5 CP)	General Elective (5 CP)	

Gruppengrößen

Die Lehrveranstaltungen in REAP (M.Sc.) umfassen in der Regel folgende Gruppengrößen:

- Vorlesungen (nur REAP): 10-50

- Vorlesungen (FaSt bzw. übergreifend für mehrere Studiengänge): 10-240

Seminare: 10-50Übungen: 10-50Projekte: 10-30

Group sizes

The courses in REAP (M.Sc.) generally comprise the following group sizes:

- Lectures (REAP only): 10-50

- Lectures (FaSt or overlapping for several degree programs): 10-240

Seminars: 10-50Exercises: 10-50Projects: 10-30

Abkürzungen

Abbreviations

Modul	arten_	Modu	Il Types
PF	Pflichtmodul	С	Compulsory Module
WP	Wahlpflichtmodul	CE	Compulsory Elective
W	Wahlmodul	E	Elective
Lehrve	ranstaltungsformen	Cours	e Types
VL	Vorlesung		Lecture
SE	Seminar		Seminar
UE	Übung		Exercise / Practical Seminar
LP	Laborpraktikum		Practical Laboratory Course
Р	Projekt		Project
ST	Stegreifarbeiten		Impromptu Writing Assignment
PK	Praktika		Internships
EX	Exkursion		Field Trip
OK	Online-Kurs		Online Course
<u>Prüfun</u>	gsleistungen_	Assess	<u>sments</u>
K	Klausur		Exam
M	Mündliche Prüfung		Oral Exam
R	Referat		Presentation
S	Semesterarbeit		Term Paper
ST	Stegreifarbeiten		Impromptu Writing Assignment
KO	Kolloquium		Colloquium
D	Dokumentation		Documentation
PR	Präsentation		Presentation
Н	Hausarbeit		Written Assignment
AQT	Aktive Qualifizierte Teilnahme		Active Qualified Participation
	reimanme		

Module Descriptions

Facets of Sustainability

REAP M.Sc.

HCU Hamburg

KEAP-IVI-IVIOO-IUI	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-101	С	3	150 h	5	1	1
	1	Module Coordinato	r			
F		, Ph.D. (Infrastruktı d Stadttechnik)	urplanung			

Courses

Title	Course type	SWS (Contact Hours)
Facets of Sustainability	lecture	3 SWS (= 31,5 h)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Facets of Sustainability	31,5 h	0		118,5 h	150 h

Objectives and contents

Objectives of qualifications (Competencies)

- "Ecological literacy": Acquaintance with basic mechanisms occurring in and affecting the natural world: e. g. biogeochemical cycles, food webs etc.
- Acquaintance with major sustainability deficits, regionally and globally, of the physical-ecological and social kind (e.g., climate change, biodiversity decline, micropollutants, the plastics crisis, poverty, environmental injustice)
- "Connecting the dots": Appreciating the connectedness of sustainability aspects and deficits across the globe (environmental degradation, poverty, education, democracy, human rights observance, lifestyles, health, economic regimes, international trade, global sourcing of raw materials)
- Basic notion of different disciplinary approaches towards operationalizing the concept of sustainability, (e. g. from ecology and economics), appreciating their disciplinary roots, their applicability and usefulness

Contents of the module

- How sustainability and sustainability deficits have been perceived over the last centuries. Classics of the environmental and sustainability literature (e. g. Schumacher, Carson, Club of Rome) and policy documents relating to sustainability (e. g. Brundtland Report, Agenda 21)
- Disciplinary and interdisciplinary approaches for analyzing the sustainability theme, concepts operationalizing "sustainability" (e. g. the Planetary Boundaries framework)
- Introduction to a range of selected sustainability deficits (ecological and otherwise) and efforts to redress them, with a revisiting of their scientific foundations, presented by guest speakers, experts in their field (e. g. climate change, the threat to freshwater resources, the global food system, raw materials mining, environmental justice),
- Sustainability politics and metrics: Guiding principles and action plans the world has come up with, at the international, national and local levels; sustainability indicators
- Students' own encounters with sustainability deficits, in their own geographical and political contexts at home

Recommended literature

- The materials for this class vary with the varying topics each year. Some staple resources include:
- - World Commission on Environment and Development (1987). Our Common Future. (Also known as the Brundtland Report)
- - The papers on "Planetary Boundaries", latest September 2023, see stockholmresilience.org
- - The IPCC Assessment Reports and Special Reports (www.ipcc.ch)
- Various United Nations Reports on different resources, like World Water Report (see unwater.org)

Forms of teaching and learning

Lectures and class discourse, with inputs from different guest speakers, experts in their fields, and contributions by students

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

Assessment methods and criteria (type, duration & scope)

Term Paper ((S)

ECTS awarding criteria

successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Physics and chemistry at the high-school diploma level

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Frequency of Offering

Every winter term

Course Language

English

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.101	22.07.2024	

Research Methods and Statistics

REAP M.Sc.

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-102	С	3	150 h	5	1	1
	1	Module Coordinato	r			
F		, Ph.D. (Infrastrukti d Stadttechnik)	urplanung			

Courses

Title	Course type	SWS (Contact Hours)
Research Methods and Statistics	lecture	3 SWS (= 31,5 h contact time)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Research Methods and Statistics	31,5 h	118,5 h			150 h

Objectives and contents

Objectives of qualifications (Competencies)

- Ability to appreciate what constitutes the scientific method
- Ability to critically reflect the scientific authority of different information sources
- Ability to perform some basic inferential statistics
- Ability to appreciate the malleability of statistical analysis
- Encounter with a programming language (e. g., Matlab, R, Python ...)

Experience to search for, obtain, and understand data; import and format data for analysis in a programming languages

Contents of the module

- What constitutes the scientific method?
- Rules of academic work, esp. conventions for referencing sources (input by HCU librarians)
- Introductory statistics, descriptive and inferential
- Students develop a topic for an inferential statistical analysis and obtain data for it (with instructor's support)
- Students conduct an inferential statistical analysis in a programming language

Recommended literature

- - George Orwell (1946). Politics and the English Language.
- - Samir Okasha (2016). Philosophy of Science. A Very Short Introduction. 2nd edition. Oxford University Press.
- Jeremy Balka Statistics (https://www.jbstatistics.com)
 - Documentation of the language used for statistical analysis; currently it is Python

Forms of teaching and learning

Lectures and consultations with instructor to discuss student ideas for statistical analysis

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

าดทค

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

Successful completion of the module examination.

Calculation of the module grade

S = 100 %

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Mathematics at the high-school diploma level

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Frequency of Offering

Every winter term

Course Language

English

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Legal and Economic Instruments of

REAP (M.Sc.)

HCU Hamburg

Environmental Policy

Module number	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-103	С	3	150 h	5	1	1
	Module Coordinators					
Fundamentals and Methods				Prof. Dr. Martin Wickel, LL.M. Recht und Verwaltung		

Courses

Title	Course type	SWS (Contact Hours)
Legal and Economic Instruments of Environmental Policy	Lecture	3 SWS (31,5 h)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Legal and Economic Instruments of Environmental Policy	31,5 h	118,5	included in self study	0	150

Objectives and contents

Objectives of qualifications (Competencies)

- Understanding of the legal and economic concepts of human and organisational action.
- Understanding of the rationale of different types of environmental policy measures.
- Good knowledge of specific fields of International and European environmental law.
- Understanding of the instruments in the field of national (Germany and other EU Member States) environmental I law.
- Ability to relate an environmental goal to a choice of instruments to achieve this goal

Contents of the module

- Principles of environmental laws.
- Types of instruments in the environmental law (command and control, economic, procedural, informational, constutional law etc.)
- Types of environmental policy measures (emission control, BACT regulation, fees, tradeable permits, subsidies, feed-intariffs, etc.) in theory and practice, with examples from Europe and around the world.
- Role of international law in the construction of national law (in particular, EU law vs. national law of the EU member states).

Recommended literature

Sterner, Coria: Policy Instruments for Environmental and Natural Resource Management, 2nd ed. 2011

Pahl-Weber, Henckel, The Plannings System and Planning Terms in Germany

Further literature will be given in the course

Forms of teaching and learning

Lecture (complemented by individual student inputs for specific subjects).

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

none

Assessment methods and criteria (type, duration & scope)

Semester work (collection), oral presentation, term paper.

ECTS awarding criteria

Successful completion of the examinations

Calculation of the module grade

semester work (1/4), oral presentation (1/4), term paper (1/2)

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

none

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Seminar room for at least 40 participants

Frequency of Offering

Winter term

Course Language

English

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	29.02.2024	

Methods of Integrative Urban Planning

REAP (M.Sc.)

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-104	С	3 SWS	150 hours	5	1.	1 Semester
	Subject Area					·s
Fundamentals and Methods				Prof. Dr. Martin Wickel, LL.M. Recht und Verwaltung		

Courses

Title		Course type	SWS (Contact Hours)	
1.	GI Science	lecture	2 SWS (21 h)	
2.	Methods of Integrated Urban Planning	seminar	1 SWS (10,5 h)	

Teaching and learning activities

Title		face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
1.	GI Science	21 h	79 h	Included in self-	0 h	100 h
2.	Methods of Integrated Urban Planning	10,5 Sh	39,5 h	study	0 h	50 h

Objectives and contents

Objectives of qualifications (Competencies)

- Knowledge of methods of integrated planning, decision making and presentation skills.
- Self-organization and project-organization.
- Implementation of different methods and support of REAP project work (P1, P2 and P3).

Contents of the module

I. GI Science

- Knowledge about characteristics and complexity of spatial data (geometrical, thematic, topological, temporal components) and the importance of a proper data modeling stage.
- Introduction to suitable GIS data models for a given application (advantages and disadvantages of vector and raster as well as methods for the transformations between each other).
- Introduction to suitable operations for a given application based on an understanding of the principles of basic geometrical, thematic and topological operations.

Basic principles of modern cartographical representation of qualitative and quantitative data

II. Methods of Integrative Urban Planning

- Methodology of scenario techniques, thinking about the future in different variations, pictographic descriptions of different future scenarios.
- Introduction to instruments of economic evaluation of projects, application-oriented simplified methodology.
- Introduction to the goal tree (approaches, leading lines, objectives, assessment criteria).
- Project planning phases (site analysis, concept, development of overall framework, details, SWOT-analysis).
- Project structures, time management, (multicultural) decision making and network in projects/ working groups.
- Certification system "sustainability in neighborhoods" (introduction to DGNB system).
- Development of illustrations of existing data and concepts overlapping contents (integration).
- Graphic presentation methods (posters, flyers, brochures).

Recommended literature

- Lo, C.P. & Yeung, A.K.W. (2002): Concepts and Techniques of Geographic Information Systems. Prentice Hall.
- Longley, P.A et al. (2005): Geographic Information Systems and Science. Wiley.
- Wheeler, S.M. (2013): Planning for Sustainability. Creating Livable, Equitable and Ecological Communities. Routledge.
- Couch, C. (2016): Urban Planning: an introduction. Palgrave Macmillan.
- Fürst, D.; Scholles, F. (2008): Handbuch Theorien und Methoden der Raum- und Umweltplanung. Rohn.
- Therivel, R. (2010): Strategic environmental assessment in action. Earthscan.
- Wood, C. (2003) Environmental Impact Assessment A Comparative Review. Prentice Hall.
- Kiker, G.A.; Bridges, T.S.; Varghese, A.; Seager, T.P.; Linkov, I. (2005): Application of Multicriteria Decision Analysis in Environmental Decision Making. In: Integrated Environmental Assessment and Management 1 (2), 95-108.

Forms of teaching and learning

Lecture (connected to REAP projects, implementation of methods in REAP projects; coaching in following semesters),

Plenum, excursions occasionally

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

none

Assessment methods and criteria (type, duration & scope)

Term paper (S)

ECTS awarding criteria

Passed examination

Calculation of the module grade

Term paper: 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of $4.17\,\%$.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

none

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

none

Frequency of Offering

Winter term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Project I (Joint Project)

REAP (M.Sc.)

HCU Hamburg

i ivioquie numbei	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-105	С	2 SWS	150 hours	5	1.	1 Semester
	Module Coordinators					
Projects				Prof. Weidlich Technical Infrastructure Management		

Courses

Title	Course type	SWS (Contact Hours)
Project I	project	2 SWS (21h)

Teaching and learning activities

l Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Project I	21 h	129	In selfstudy	31,5	150h

Objectives and contents

Objectives of qualifications (Competencies)

- Ability of planning and conducting interdisciplinary exercises in a short, fixed period with the focus on selected international metropolitan cities
 or regions (except Hamburg).
- Self-organization of more independent, integrated and work-related exercises in groups.
- Project-organization and development of core skills such as communication, cooperation and a multi- and interdisciplinary approach.

Contents of the module

- Targets and contents of the project will be elaborated each semester by the REAP-team.
- Students can make suggestions about the contents of the project.
- Targets and contents of the project are based on the modules of the current semester.

Recommended literature

World Future Council/HafenCity University, Regenerative Cities (available online)

Hellige, H.D. (2018). The reception of the resilience concept in the energy discourse, and genesis of the theory of resilient energy system design. In Gößling-Reisemann, S., Hellige, H.D., & Thier, P. (2018). The Resilience Concept: from its historical roots to theoretical framework for critical infrastructure design. ISSN 1613-4907. https://doi.org/10.26092/elib/572Chelleri, L. (2012). From the «Resilient City» to Urban Resilience. A review essay on understanding and integrating the resilience perspective for urban systems. Documents d'Anàlisi Geogràfica, 58, 287–306. https://doi.org/10.5565/rev/dag.175

Forms of teaching and learning

Project: Autonomous project work in groups (complemented by seminar and content of the modules of the current semester), Plenum, excursions occasionally

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

regular participation (at least 80 %)

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

None

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Seminar room, with equipment for online/hybrid sessions.

Frequency of Offering

Winter term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Urban Material Cycles (UMC)

REAP (M.Sc.)

HCU Hamburg

i woodlie number	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration	
REAP-M-Mod-201	С	3 SWS	150 h	5	2	1 Semester	
	Subject Area			Module Coordinators			
Fundamentals and Methods				Prof. DrIng. Gesa Kapteina (Building Materials) Prof. Irene Peters, Ph.D. (Technical Urban Infrastructure Systems)			

Courses

Title	Course type	SWS (Contact Hours)
Urban Material Cycles	Lecture	3 SWS (31,5 h)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	nrojectroom	Total student workload
Urban Material Cycles	31,5 h	118,5 h	included in self study	0 h	150 h

Objectives and contents

Objectives of qualifications (Competencies)

Being acquainted with a range of urban material streams: construction materials (conventional and renewable), material streams for operating technical infrastructures, material streams present in municipal solid waste; their energy and environmental profile over their life cycle, conventional disposal paths and recycling opportunities.

Being capable of recognizing and promoting opportunities to implement resource efficiency and circular economy processes in construction and solid waste management.

Contents of the module

Introduction to major construction materials (mineral binders, concrete, steel, glass, wood) and other materials used in construction of buildings and infrastructure:

- Mining, refining, production process of material
- Performance, physical and chemical properties, typical applications
- Recyclability, status of recycling for the material
- Basic knowledge of energy and resource use and emissions over the material's life cycle
- Regimes for incentivizing circular economy processes
- Reuse vs. demolition of buildings and built infrastructure
- Supply chain management options (esp. for globally sourced materials with non-sustainable extraction)

Fundamentals of municipal solid waste management, with sensitivity to conditions in different geographical contexts:

- Municipal solid waste stream and its composition
- Conventional disposal paths and disposal facilities, and associated resource use and emissions
- Recycling technologies and facilities, resource use and emissions implied by recycling path(s), status of recycling for waste stream (fractions), emissions and regulatory regimes for incentivizing circular economy processes
- Synergies with industrial waste and wastewater management (e.g., concerning the bio-organics fractions)

Recommended literature

Various materials (references and material will be given in the course)

Hemeda, Sayed, Sustainable Construction and Building Materials IntechOpen, 2019, https://directory.doabooks.org/handle/20.500.12854/130818
Hebel, Dirk E., Cultivated building materials industrialized natural resources for architecture and construction gttp://www.gbv.de/dms/weimar/toc/893435767 toc.pdf

Forms of teaching and learning

Lectures and class discourse, with inputs from different experts from HCU and other institutions

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

Assessment methods and criteria (type, duration & scope)

written exam (90 min)

ECTS awarding criteria

successful completion of the module examination

Calculation of the module grade

100% of the written exam

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

physics and chemistry at the high-school diploma level

Applicability of Module

This module is usable for REAP (M.Sc.) and open for other master programmes as an elective.

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

none

Frequency of Offering

every summer term

Course Language

English

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	29.02.2024	

Urban Energy Flows

REAP (M.Sc.)

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload		Semester (proposed)	Duration
REAP-M-Mod-202	С	3 SWS	150 hours	5	2.	1 Semester
	Subject Area			N	Module Coordinator	rs .
Fundamentals and Methods				Prof. Weidlich (Technical Infrastructure Management)		

Courses

Title	Course type	SWS (Contact Hours/Week)
Urban Energy Flows	Lecture	3 SWS (2,25h/week)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Urban Energy Flows	31,5 h	118,5	In selfstudy	0	150h

Objectives and contents

Objectives of qualifications (Competencies)

- Understanding concepts of energy, exergy, energy efficiency, and laws of thermodynamics
- Understanding the principles of power plants, combined heat and power (CHP) plants running on fossil fuels and/or renewable energy
- Knowledge of Electricity distribution systems, district heating and cooling
- Knowledge of Energy demand for transport and communication systems
- Understanding Sankey Diagrams, Merit Order Diagrams and energy statistics

Contents of the module

- Basics on energy demand and supply (forms of energy, conversions, and indicators for energy efficiency)
- Electricity production plants, introduction of renewable energy into urban energy systems (technologies)
- · Energy demand for the transport
- Using renewable energies in an urban environment (techniques and contributions)
- Visualisation of energy flows by using Sankey Diagrams

Recommended literature

Sovacool, Benjamin K.; Brown, Marilyn A.; Valentine, Scott V. (2016): Fact and fiction in global energy policy. Fifteen contentious questions. Baltimore: Johns Hopkins University Press.

Frederiksen, Svend; Werner, Sven (2013): District heating and cooling. Lund: Student literature

Ketfi O., Merzouk M., Kasbaidji Merzouk N., El Metenan S.(2015): Performance of a Single Effect Solar Absorption Cooling system (lithium bromide-water), Science Direct 74, 130-138

Al-Hallaj, Said; Kiszynski, Kristofer (2011): Hybrid hydrogen systems. Stationary and transportation applications. London: Springer (Green energy and technology)

Forms of teaching and learning

Lecture (complemented by tutorial and individual student inputs for specific subjects), Plenum, excursions occasionally

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

one

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

successful completion of the module examination.

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Awareness of energy needs in cities and of urban and architectural planning and building procedures (content).

Applicability of Module

This module is usable for REAP (M.Sc.).

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Seminar room

Frequency of Offering

Summer term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Urban Water Cycle

REAP (M.Sc.)

HCU Hamburg

Modille number	Type of module (C/CE/E)	SWS	Student workload		Semester (proposed)	Duration
REAP-M-Mod-203	С	3 SWS	150 Std.	5	2	1 Semester
Subject Area					Module Coordinator	S
Fundamentals and Methods				Prof. DrIng. Wolfgang Dickhaut (Umweltgerechte Stadt- und Infrastrukturplanung)		

Courses

Title	Course type	SWS (Contact Hours)
Urban Water Cycle	lecture	3 SWS (31,5 Std.)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Urban Water Cycle	31,5 Std.	118,5	In selfstudy	0	150 Std.

Objectives and contents

Objectives of qualifications (Competencies)

- Understanding of the basic water-cycle situation in urban areas and the key strategies for sustainable water resource management.
- Skills development: perception, assessment and decision making in the field of water-cycle management.

Contents of the module

- Water-cycle in urban areas present situation and key strategies, using international examples:
 - Context :Urban Water cycle and adaptation to climate change
 - o Stormwater: differences from the natural water-cycle (precipitation e.g. rainfall, rate of flow, infiltration, evatransporation, differences between the world's regions
 - o Flowing waters: in urban areas, differences from natural flowing water
 - o Wastewater and its impact on human beings and water bodies, potentials for recycling, criteria for treatment selection
- Overview of alternative technologies in Stormwater- and Wastewater managment:
 - o Consolidation of standard technologies of wastewater treatment and rainwater treatment (in Europe), e.g. centralized wastewater plants (treatment processes, mechanical and biological; sewer system).
 - Wastewater: Potentials for recycling, separation of streams, criteria for treatment selection, advantages and disadvantages of different treatment systems
 - Stormwater: Measuretypes of "Water sensitive Urban design"

Recommended literature

Hoyer, Jacqueline / Dickhaut, Wolfgang / Kronawitter, Lukas / Weber, Björn; Water Sensitive Urban Design – Principles and Inspirations for Sustainable Stormwater Management in the City of the Future; Jovis Verlag, 2011

United Nations Environment Programme, 2008, Every Drop Counts Environmentally Sound Technologies for Urban and Domestic Water Use Efficiency

SUSTAINABLE SANITATION AND WATER MANAGEMENT TOOLBOX; http://www.sswm.info/

The United Nations World Water Development Report 3; WATER IN A CHANGING WORLD; 2009

Forms of teaching and learning

excursion (optional)

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

none

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

Successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

none

Applicability of Module

This module is usable for REAP (M.Sc.) and is open for other study programmes as an elective.

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

none

Frequency of Offering

every summer term

Course Language

english

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Project II (Joint Project)

REAP (M.Sc.)

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-204	С	3 SWS	300 hours	10	2.	1 Semester
	Subject Area					S
Projects				(Technical	Prof. Weidlich Infrastructure Mar	nagement)

Courses

Title	Course type	SWS (Contact Hours/Week)
Project II	project	3 SWS (2,25h/week)

Teaching and learning activities

l Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Project II	31,5 h	268,5	In selfstudy	31,5	300h

Objectives and contents

Objectives of qualifications (Competencies)

- Learn about the principles and indicators of sustainable urbanism through a guided analysis of urban neighborhoods in Hamburg
- Develop innovative resource efficient interventions which enhance the sustainability of the neighborhood
- Ability of planning and conducting bigger and interdisciplinary exercises in a short, fixed period based on the skills of Project I.
- Self-organization of more independent, integrated and work-related exercises.

Contents of the module

- Targets and contents of the project will be elaborated each semester by the REAP-team.
- Students can make suggestions about the contents of the project.
- Targets and contents of the project are based on the modules REAP-M-Mod-201 REAP-M-Mod-203 of the current semester.

Recommended literature

Brown, Lance Jay, and David Dixon. Urban Design for an Urban Century: Shaping More Livable, Equitable, and Resilient Cities, John Wiley & Sons, Incorporated, 2014. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/hcuhamburg-ebooks/detail.action?docID=1676116. Cidell J. Imagining Sustainability Creative Urban Environmental Governance in Chicago and Melbourne. 2017, ISBN: 978-1-138-92607-3

Forms of teaching and learning

Project: Autonomous project work in groups (complemented by seminar and content of the modules of the current semester), Plenum, excursions occasionally

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

regular participation (min. 80%)

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 8,33 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

None

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Seminar room

Frequency of Offering

Summer term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Climate Responsive Architecture and

REAP (M.Sc.)

HCU Hamburg

Planning

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration	
REAP-M-Mod-301	CE	3 SWS	150 hours	5	3.	1 Semester	
	Subject Area			Module Coordinators			
Resources, Technologies and Environment				Prof. Dirk Krutke (Technische Gebäudeausrüstung)			

Courses

Title	Course type	SWS (Contact Hours)
Climate Responsive Architecture and Planning	seminar	3 SWS (31,5h)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Climate Responsive Architecture and Planning	31,5 h	118,5	In self-study	0	150h

Objectives and contents

Objectives of qualifications (Competencies)

- Potential to reach Zero-Energy-Situations in the different main climates zones.
- Knowledge of interdependencies between buildings, their arrangement in urban space, energy demand, comfort and user behaviour.

Contents of the module

- Comfort criteria (specially thermal in summer and visual).
- Passive-solar optimization of buildings, passive cooling methods and their application to different climatic locations.
- Urban design requirements for climate-responsive energy applications.
- Low-energy planning strategies for urban quarters and buildings.
- Urban buildings as energy generators.
- Building user behaviour and its impact on energy performance of buildings and the sustainability of urban environments.
- Vernacular architecture and best practice examples as sources for climate responsive building design.
- Tools for the assessment of climate and derivation of design rules.

Recommended literature

David Mackay: Without the hot air, www.withouthotair.com

Brian Cody, Form Follows Energy, Birkhäuser, 2017

Forms of teaching and learning

Lectures for input, individual student inputs for specific subjects, seminar discussions.

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

Regular active participation (compulsory attendance for at least 80% of the session dates)

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

Regular active participation and successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Recommended: Successful completion of the module REAP-M-Mod-101 and REAP-M-Mod-202

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces (room type / extent of use project work and/or model construction in self-study)

Seminar room

Frequency of Offering

Winter term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Technologies for Sustainable Water Resource Management

REAP (M.Sc.)

HCU Hamburg

Module number	Type of module (C/CE/E)	SWS	Student workload	, ,	Semester (proposed)	Duration
REAP-M-Mod-302	CE	3 SWS	150 Std.	5	3	1 Semester
	Module Coordinators					
Resources, Technologies and En	J	lfgang Dickhaut (Ur Ind Infrastrukturpla	ŭ			

Courses

Title	Course type	SWS (Contact Hours)
Technologies for Sustainable Water Resource Management	lecture	3 SWS (31,5 Std.)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Technologies for Sustainable Water Resource Management	31,5 Std.	118,5	In selfstudy	0	150 Std.

Objectives and contents

Objectives of qualifications (Competencies)

Knowledge of different technologies in sustainable decentralised domestic wastewater and faecal sludge and rainwater management.
Skills development: dimensioning, perception, assessment and decision making in the field of sustainable decentralised domestic wastewater,
faecal sludge and rainwater management.

rainwater management.

- Context :Urban Water cycle and adaptation to climate change
- Technologies for a sustainable decentralised domestic wastewater and faecal sludge management:
 - Technologies, e.g. grey water treatment, water toilets with liquid/solid separation, dry toilets, membrane filtration, biogas plants, DEWATS, Faecal Sludge emptying and transportation technologies.
 - Integration of wastewater and faecal sludge management in urban/settlement planning.
 - Integration of wastewater management in the planning of individual buildings and sites.
 - Wastewater and faecal management examples and assessment criteria in the selection of technologies in developing countries.
- Technologies for decentralised sustainable rainwater management:
 - Technologies, e.g. Rainwater infiltration technologies, e.g. surface, trench, gulley and trench, shaft,
 - Water evaporation, Decentralised retention, Rainwater usage, Planted roofs, Rainwater treatment, e.g. soil filter.
 - Integration of rainwater management in urban/settlement and landscape planning.
 - Integration of rainwater management in the planning of individual buildings and sites.
 - Rainwater management examples and assessment criteria in the selection of technologies in developing countries

Recommended literature

Hoyer, Jacqueline / Dickhaut, Wolfgang / Kronawitter, Lukas / Weber, Björn; Water Sensitive Urban Design – Principles and Inspirations for Sustainable Stormwater Management in the City of the Future; Jovis Verlag, 2011

United Nations Environment Programme, 2008, Every Drop Counts Environmentally Sound Technologies for Urban and Domestic Water Use Efficiency

SUSTAINABLE SANITATION AND WATER MANAGEMENT TOOLBOX; http://www.sswm.info/

Elizabeth Tilley, Lukas Ulrich, Christoph Lüthi, Philippe Reymond and Christian Zurbrüg; Compendium of Sanitation Systems and Technologies; EAWAG; 2014; www.sandec.ch/compendium.

English translations of significant publications of the DWA Set of Rules, 52 DWA-Standards and Guidelines, DWA-Topics and various brochures in pdf format (single user) - Edition April 2016

ICLEI; SWITCH Training Kit Integrated Urban Water Management in the City of the Future; 2011

BORDA; Decentralised Wastewater Treatment Systems (DEWATS) and Sanitation in Developing Countries; 2009

Strande, L., Ronteltap, M. & Brdjanovic, D. (Eds.) (2014). Faecal Sludge Management: Systems Approach for Implementation and Operation.

Tayler, K. (2018). Faecal sludge and septage treatment - A guide for Low and Middle Income Countrie

Forms of teaching and learning

excursion (optional)

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

none

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

Successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

none

Applicability of Module

This module is usable for REAP (M.Sc.) and open for other masterprogrammes as an elective.

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

none

Frequency of Offering

every summer term

Course Language

english

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

Technologies for Sustainable

REAP (M.Sc.)

HCU Hamburg

Material Cycles

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-303	CE	2 SWS	150 hours	5	3.	1 Semester
Subject Area				N	∕lodule Coordinator	S
Resources, Technologies and Environment				Prof. Wilts (Circular Economy)		

Courses

Title	Course type	SWS (Contact Hours)	
Technologies for Sustainable Material Cycles	Lecture	2 SWS (21h)	

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation		Total student workload
Technologies for Sustainable Material Cycles	21 h	129	In selfstudy	0	150h

Objectives and contents

Objectives of qualifications (Competencies)

- Knowledge of the standard technologies for material cycles and recycling.
- Competence of decision making in the field of selection of material related technologies.

Contents of the module

- Planning strategies for long life cycles of buildings, building elements and building materials.
- Technologies for material conservation and appropriate construction.
- Technologies for building element (product) and building material (material) recycling.
- Planning procedures for recycling adapted construction and selection of materials.

Recommended literature

Various materials (references and material will be given in the course)

Forms of teaching and learning

Lecture (complemented by tutorial and individual student inputs for specific subjects), Plenum, excursions occasionally

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Successful completion of the module REAP-M-Mod-201 is recommended.

Applicability of Module

This module is usable for REAP (M.Sc.) and open for other masterprogrammes as an elective.

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Seminar room

Frequency of Offering

Winter term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

REAP M.Sc.

Economics and Planning of Technical Urban Infrastructure Systems

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration	
REAP/SP-M-Mod-304	CE	3	150 h	5	3	1	
Subject Area				Module Coordinator			
Resources, Institutions, and Instruments				Prof. Irene Peters, Ph.D. (Infrastrukturplanung und Stadttechnik)			

Courses

Title	Course type	SWS (Contact Hours)		
Economics and Planning of Technical Urban Infrastructure Systems	Lecture	3 SWS (= 31,5 h)	30	

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Economics and Planning of Technical Urban Infrastructure Systems	31,5 h	118,5 h			150 h

Objectives and contents

Objectives of qualifications (Competencies)

(To clarify: "Technical Urban Infrastructure Systems" here covers primarily energy supply, water supply, wastewater management, and solid waste management. The course does not deal with all of these each year, applications vary.)
Students have an appreciation of

- the principles underlying the (economic) functioning of technical urban infrastructure service markets (elements of Industrial Organization and Regulatory Economics)
- the need for regulation of technical infrastructural service markets, and different regulatory regimes and institutions
- · competition law and infrastructural planning law in concert with urban development and stakeholder actions
- the potential for digitalization to enhance performance and resource efficiency of technical infrastructure service provision

Contents of the module

(To clarify: "Technical Urban Infrastructure Systems" here covers primarily energy supply, water supply, wastewater management, and solid waste management. The course does not deal with all of these each year, applications vary.)
Joint module of REAP and Urban Planning, offering ...

- basic economic and legal concepts relevant for technical infrastructure service markets, like: Cost patterns, market forms (e.g. competition in the market vs. for the market), regulatory models (e.g. rate-of-return or yardstick) regulatory institutions (e.g. in Germany, Federal Network Agency and the Monopoly Commission)
- glimpses into the history of regulation, liberalization, de- and re-regulation of technical infrastructure service sectors in the U.S. and Europe, with exemplary emphasis on Germany and examples from other countries
 - competition law and examples of infrastructural planning law at European Community and German national levels
 - aims and success of regulatory reform and planning law provisions in the technical urban service sectors
 - potential of digitalization, models of smart infrastructure management (e.g., infrastructure BIM, decentralized digital load supply management, smart tariffs, urban neighborhoods as actors in the energy market)
 - · role and scope of the municipality, and municipal actors, in shaping infrastructural service provision and markets
 - examples of real-world implementation of technical urban infrastructure projects (e.g. heating grids, virtual power plants, microgrids,
 - source-separation wastewater projects...) in their technical and project development aspects

 ... all this in light of "smart" provision to enhance performance and resource efficiency and to promote sustainability goals

Recommended literature

The materials for this class vary with evolving research and development. Some of the resources for this class include

- Fraunhofer Institute for Solar Energy Systems (https://www.ise.fraunhofer.de/en.html)
- Agora Energiewende (https://www.agora-energiewende.org)
- Monopolies Commission of Germany (https://www.monopolkommission.de/en/)
- W. Brian Arthur (2015). Complexity and the Economy. Lecture at the Stanford Complexity Group, December 3, 2015.

Forms of teaching and learning

ecture with seminar elements, possibly including excursion(s) to a technical infrastructure facility like a heat storage system.

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

None

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

Successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

A basic understanding of the (technical) functioning of technical urban infrastructure systems (energy and water supply, wastewater and solid waste management)

Applicability of Module

This module is usable for REAP (M.Sc.) and Urban Planning (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Frequency of Offering

Every winter term

Course Language

English

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

REAP M.Sc.

Cost-Benefit Analysis of Technical Infrastructure Projects

HCU Hamburg

i woquie number	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration	
REAP/SP-M-Mod-305	CE	3	150 h	5	3	1	
Subject Area				Module Coordinator			
Resources, Institutions, and Instruments				Prof. Irene Peters, Ph.D. (Infrastrukturplanung und Stadttechnik)			

Courses

Title	Course type	SWS (Contact Hours)
Cost-Benefit Analysis of Technical Infrastructure Projects	Lecture	3 SWS (= 31,5 h contact time)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Cost-Benefit Analysis of Technical Infrastructure Projects	31,5 h	118,5	in sel	fstudy	150 h

Objectives and contents

Objectives of qualifications (Competencies)

For students to be able to understand, to critically appraise and to perform simple versions of ex-ante and ex-post decision support and project evaluation along the methodological lines of

- Cost-Benefit Analysis (emphasis of the course)
- Alternatives in Decision Analysis (smaller part of course time)

Contents of the module

Joint module of REAP and Urban Planning, offering ...

- Common theoretical foundations (Decision Theory) for Cost-Benefit Analysis and Decision Analysis
- Economic Cost-Benefit Analysis: Essential elements such as different accounting frameworks (financial and economic accounting), discounting, valuation of intangibles (through monetization), shadow pricing, etc.
- Elements of Decision Analysis, esp. in contrast to Cost-Benefit Analysis (e.g. monetization vs. refraining from monetization; elicitation of decision maker's and makers' preferences, i.e. individual vs. aggregate preferences)
- Elements common to both types of analysis (e.g., the treatment of uncertainty)
- Case studies as examples for the application of Cost-Benefit and Decision Analysis

Recommended literature

Frank Ackerman and Lisa E. Heinzerling (2005). Priceless. On Knowing the Price of Everything and the Value of Nothing. The New Press.

European Commission (2014). Guide to Cost-Benefit Analysis of Investment Projects.

Ronald A. Howard and Ali E. Abbas (2015). Foundations of Decision Analysis. Pearso

Forms of teaching and learning

Lecture with seminar elements

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

าดทค

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

Successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Mathematics at the high-school diploma level

Applicability of Module

This module is usable for REAP (M.Sc.) and Urban Planning (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Frequency of Offering

Every winter term

Course Language

English

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.101	22.07.2024	

Material Flow Analysis and Life Cycle Assessment

REAP (M.Sc.)

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration			
REAP-M-Mod-306	CE	3 SWS	150 hours	5	3.	1 Semester			
	Subject Area					Module Coordinators			
Resources, Institutions and Instruments				Prof. Weidlich Technical Infrastructure Management					

Courses

Title	Course type	SWS (Contact Hours)	
Material Flow Analysis and Life Cycle Assessment	Lecture	3 SWS (31,5h)	28

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Material Flow Analysis and	31,5 h	118,5	In selfstudy	0	150h
Life Cycle Assessment					

Objectives and contents

Objectives of qualifications (Competencies)

• Understanding the principles and application of Material Flow Analysis and Life Cycle Assessment.

Contents of the module

- Principles of Material Flow Analysis (MFA) and Life Cycle Assessment (LCA), their foundations, extensions and limitations.
- Computer-aided application of MFA and LCA.
- Computer aided Life Cycle Assessment (according to ISO 14044), application:
- Goal and scope definition.
- Life cycle inventory analysis (LCI); including data collection, definition of system boundaries, modelling of material flows.
- Life cycle impact assessment (LCIA); including selection of impact categories, category indicators, characterization models, normalization.
- Life cycle interpretation.

Recommended literature

Hauschild M.Z., Olsen S.I., Rosenbaum R.K., Life Cycle Assessment, Theory and Practice. 2018. Springer, ISBN 978-3-319-56474-6 ISBN 978-3-319-56475-3 (eBook), DOI 10.1007/978-3-319-56475-3

Grajcar, M., Rumiantceva K., Weidlich I. On the imaginary accuracy of the LCA on the basis of the houseboat in Hamburg. Conference of Environmental and Climate Technologies (CONECT). 15-17 May 2019, Riga, Latvia, DOI: https://doi.org/10.2478/rtuect-2019-0065

Forms of teaching and learning

Lecture (complemented by tutorial and individual student inputs for specific subjects), Plenum, excursions occasionally

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of $4.17\,\%$.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

None

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Seminar room

Frequency of Offering

Winter term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

REAP (M.Sc.) General Elective HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-307&308	С	2-4 SWS	150 hours	5	3.	1 Semester
	Module Coordinators					
General Elective				Prof. Weidlich Technical Infrastructure Management		

Courses

Title	Course type	SWS (Contact Hours)	
1)	1)	1)	

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
General Elective	1)	1)	1)	1)	150h

Objectives and contents

Objectives of qualifications (Competencies)

Preparation and support of students Master theses (e.g. statistic courses for statistic evaluation of public survey).

Contents of the module

- Students will be advised according to their Master thesis theme to find the appropriate course.
- Students can select one of the modules of offered study courses at HCU or other universities in Hamburg.

Recommended literature

Defined by selected module.

Forms of teaching and learning

Defined by selected module.

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

Defined by selected module.

Assessment methods and criteria (type, duration & scope)

Defined by selected module.

ECTS awarding criteria

Defined by selected module.

Calculation of the module grade

Defined by selected module.

Weighting of the module grade

The module grade is included in the final grade at a rate of 4.17 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Defined by selected module.

Applicability of Module

Special requirements for workplaces
(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Defined by selected module.

Frequency of Offering

Winter term / Summer term

Course Language

Deutsch/Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	29.02.2024	

1) results from selected course

Project III (Joint Project)

REAP (M.Sc.)

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration			
REAP-M-Mod-309	С	3 SWS	300 hours	10	3.	1 Semester			
	Subject Area					Module Coordinators			
Projects				Prof. Wilts (Circular Economy)					

Courses

Title	Course type	SWS (Contact Hours)
Project III	Project	3 SWS (31,5)

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Project III	31,5 h	268,5	In self study	In self study	300h

Objectives and contents

Objectives of qualifications (Competencies)

- · Ability of planning and conducting bigger and interdisciplinary exercises in a concrete international environment.
- Self-organization of deep interdisciplinary work- Based on the skills from Project I and Project II.
- Joint project means that it is taught by instructors of different degree programmes and attended by students of different degree programmes

Contents of the module

- Targets and contents of the project will been elaborated each semester by the REAP-team.
- Students can make suggestions about the contents of the project.
- Targets and contents of the project are based on the modules of the current semester.

Recommended literature

Bates, G. & Jones, L. (2012): Monitoring and Evaluation: A guide for community projects. URL:http://www.cph.org.uk/wp-content/uploads/2013/02/Monitoring-and-evaluation-a-guide-for-communityprojects.pdf

Clark, W.; Cooke, G. (2016): Smart green cities: toward a carbon neutral world. Routledge.

EC (2004): Aid delivery methods - Project cycle management guidelines.

URL:http://ec.europa.eu/europeaid/multimedia/publications/documents/tools/europeaid_adm_pcm_guidelines_2004_en.pdf Lehmann, S. (2015): Low carbon cities: transforming urban systems. Routledge.

Wheeler, S.M. (2013): Planning for Sustainability. Creating Livable, Equitable and Ecological Communities.Routledge.

Forms of teaching and learning

Project: Autonomous project work in groups (complemented by seminar and content of the modules of the current semester), Plenum, excursions occasionally, field trip (if possible abroad)

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

regular participation

Assessment methods and criteria (type, duration & scope)

Term Paper (S)

ECTS awarding criteria

successful completion of the module examination

Calculation of the module grade

S = 100%

Weighting of the module grade

The module grade is included in the final grade at a rate of 8,33 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Recommended: Successful completion of the module REAP-M-Mod-101 Project I and REAP-M-Mod-204 Project II

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Seminar room

Frequency of Offering

Winter term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	22.07.2024	

REAP (M.Sc.)

Thesis

HCU Hamburg

	Type of module (C/CE/E)	SWS	Student workload	CP (according to ECTS)	Semester (proposed)	Duration
REAP-M-Mod-401	С	-	900 hours	30	4.	1 Semester
Subject Area			N	∕lodule Coordinator	·s	
Thesis			Prof. Weidlich (Technical Infrastructure Management)			

Courses

Title	Course type	SWS (Contact Hours/Week)
Thesis	Thesis	-

Teaching and learning activities

Title	face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Thesis	-	900	In selfstudy	0	900h

Objectives and contents

Objectives of qualifications (Competencies)

- Application of the appropriate technical, scientific and/ or artistic methods proving the ability to work independently
 on a special topic in a short, fixed period and demonstration of a thorough knowledge/ understanding
 of the subject
- Deepening abilities in interdisciplinary work alongside the ability to develop disciplinary methods/ knowledge and applying them in other fields
- Development of core skills: communication, cooperation and a multi- and interdisciplinary approach

Contents of the module

- Students should make suggestions about the contents of their thesis
- Targets and contents of theses outside the REAP-contents have to be approved

Recommended literature

Defined by selected thesis topic.

Forms of teaching and learning

Thesis: Autonomous work (students are supported by the appropriate REAP-specialist). Further important information can be found on the HCU-Website (Master > REAP > For Students > REAP Master Thesis Infos).

Assessment and ECTS awarding criteria

Precondition of examination (Pre-requisite for examination, attendance)

The thesis has to be written by single student, students wishing to work together (maximum 2) have to apply for it.
The thesis must be completed within 22 weeks. At the end of the fixed period the student has to submit a written report.

Assessment methods and criteria (type, duration & scope)

The final assessment of the thesis is an oral exam (colloquium) and a presentation (TH, PR, KO). Submission: The thesis must be submitted digitally to the Examination Office not later than on the last day of the processing period. For the digital submission please save your work as pdf in the HCU-Cloud https://cloud.hcuhamburg.de with the file name as following "Last name thesis BA or MA". Further information: www.hcuhamburg. de/en/student-services/examination-office/thesisexamination/

ECTS awarding criteria

successful completion of the thesis, presentation and colloquium

Calculation of the module grade

TH = 75%, PR + KO = 25%

The grade is determined by both reviewers equally.

Weighting of the module grade

The module grade is included in the final grade at a rate of 25 %.

Additional Information

Previous knowledge / Requirements for participation (in form and content) in accordance with examination regulations

Applicability of Module

This module is usable for REAP (M.Sc.)

Special requirements for workplaces

(room type / extent of use presence / extent of use project work and/or model construction in self-study)

Frequency of Offering

Every term

Course Language

Englisch

Valid from	Valid until	Version	last updated	Adopted on
WiSe 23/24		V.1 01	29.02.2024	

[Q] STUDIES

Masterstudienprogramm REAP Fachübergreifende Studienangebote (cross-curricular Program)

HCU Hamburg

Module Number	Type (C/CE/E)	SWS	Workload	СР	Semester (proposed)	Duration	
Q-M-Mod-001	С	4 SWS	150 hours	5 CP	2	1 Semester	
Teaching and Learning Area				Person responsible for the module			
Cross-Curricular Program				Prof. Dr. Gernot Grabher (Stadt- und Regionalökonomie			

Courses

Title	Course Type	SWS (Contact Hours)
[Q] STUDIES	1)	2 SWS (21. hours.)
[Q] STUDIES	1)	2 SWS (21. hours)

Student Workload

Title	Face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
[Q] STUDIES	21 hours	1)	1)	1)	75 hours
[Q] STUDIES	21 hours	1)	1)	1)	75 hours

Obejctives and Contents

Obejctives and Contents (Competencies)

- Reflective Competencies: Scientific analysis and reflection: Students can analyze what they have learned and they can integrate existing and new knowledge in complex contexts
- Cultural competencies: Transdisciplinary and Intercultural Communication: Students will be able to engage in factual exchange with representatives of different academic fields of activity
- Perceptual and creative competencies: Students are able to apply techniques for creative and innovative design independently
- Competencies for action: Proactive and responsible action

Contents

[Q] STUDIES I und [Q] STUDIES II:

Different event formats with a theoretical focus

- Offers for training perception and creativity
- Practical project work such as the conception of events and their implementation

teaching areas:

- Science | Technology | Knowledge
- Media | Art | Culture
- economy | politics | society

Recommended Literature

To be announced in Seminar

Teaching and Learning methods

If applicable, group work, project work in interdisciplinary working groups, e-learning components in the form of videos, digital synchronous teaching, face-to-face teaching, excursions (optional)

Examination achievements and requirements for the award of CPs

Precondition of Examination

Regular active participation (attendance required for at least 80% of the session dates)

Type of Examination

[Q] STUDIES I and II: Examination performance varies depending on the course chosen and will be announced at the beginning of the semester.

Prerequisites for the award of CP

80% participation, active participation, accompanying assignments

Composition of Module Mark

Examination of [Q] STUDIES I is 50% of the module grade. Examination of [Q]STUDIES is 50% of the module grade.

Weighting of the module grade

Results from the curriculum of the respective study program.

Supplementary information

Prior knowledge for participation in the module (form and content)

Knowledge and techniques of scientific work are recommended.

Usability of the Module/ Verwendbarkeit des Moduls/ Access requirements for future modules (mandatory or recommended)

Module is usable in Architektur (M.Sc.), Bauingenieurwesen (M.Sc.), Geodäsie und Geoinformatik (M.Sc.), REAP (M.Sc.), Stadtplanung (M.Sc.) und Urban Design (M.Sc.)

Special Need for Workplaces (Type of room / extent of use Presence / extent of use Project work and/or model building in self-study)

Frequeny of Offering

Each term

Teaching Language

1)

Valid from	Valid to	Version	Last updated	Decided on
WiSe 23/24 / SoSe XX		V.1 01	09.02.2024	

1) results from selected course

Masterstudienprogramm REAP Fachübergreifende Studienangebote (cross-curricular Program)

HCU Hamburg

BASICS Project Management

Module Number	Type (C/CE/E)	SWS	Workload	CP Semester (proposed)		Duration	
BS-M-Mod-001	С	4 SWS	150 hours	5 CP	1	1 Semester	
Teaching and Learning Area				Person responsible for the module			
Cross-Curricular Program			Prof. DrIng. Thomas Krüger (Projektentwicklung und Projektmanagement in der Stadtplanung)				

Courses

Title	Course Type	Contact Hours/Week (SWS)	
Projectmanagement Lecture Projektmanagement ARC/BIW/GEO/REAP/UD	Lecture Seminar	2 SWS (21. hours) 2 SWS (21 hours)	

Student Workload

Title	Face-to-face teaching	self study,	thereof: examination preparation	thereof: projectroom allocation time	Total student workload
Projectmanagement Lecture Projektmanagement ARC/BIW/GEO/REAP/UD	21 hours 21 hours	0 hours will be announced in the course	0 hours will be announced in the course	54 hours will be announced in the course	75 hours 75 hours

Objectives and Contents

Obejctives and Contents (Competencies)

Knowing the typical problems, instruments, methods, actors and organizational contexts of project management, its theoretical references and forms of practice, also beyond one's own discipline.

Apply and reflect on the instruments and methods of project management in a discipline-specific context.

Contents

1) Lecture (depending on the study program, the German or English lecture is chosen)

Basics: Project Management Lecture (for all English-language study programs)

Instruments, actors, problems and organizational context of project management

2) Accompanying seminars

Application and deepening of the lecture contents in the disciplinary context or according to study programs

Recommended Literature

1.) Lecture

Basics: Project Management Lecture (English)

Meredith, Jack R.; Mantel, Samuel J.; Shafer, Scott M. (2016): Project management. A managerial approach. 9. ed., internat. student version. Singapore: Wiley.

Project Management Institute (2013). A Guide to the Project Management Body of Knowledge (PMBOK Guide) (5th ed.). Newton Square, PA: Project Management Institute, Inc.

Teaching and Learning methods

Lecture: Face-to-face event with eLearning components in the form of videos, digital synchronous course, excursion (optional)

Seminar: Varies depending on the study program: group work, project work in interdisciplinary working groups, eLearning components in the form of videos, digital synchronous teaching, face-to-face teaching

Examination achievements and requirements for the award of CPs

Precondition of Examination

Lecture: none

Seminar: 80 % Participation

Type of Examination

Lecture: Exam 90 min.

Seminar: form of Examination tob e defined by ach program

Prerequisites for the award of CP

80% participation, active participation, accompanying assignments

Composition of Module Mark

Examination of the lecture is 50% of the module grade. Examination of the seminar is 50% of the module grade.

Weighting of the module grade

Module grade is 4.17% of the final grade.

Supplementary information

Prior knowledge for participation in the module (form and content)

None

Usability of the Module/ Verwendbarkeit des Moduls/ Access requirements for future modules (mandatory or recommended)

Module is usable in Architektur (M.Sc.), Bauingenieurwesen (M.Sc.), Geodäsie und Geoinformatik (M.Sc.), REAP (M.Sc.), Stadtplanung (M.Sc.) und Urban Design (M.Sc.)

Special Need for Workplaces (Type of room / extent of use Presence / extent of use Project work and/or model building in self-study)

Lecture: Large lecture hall (max. 200 participants)

Seminar: if necessary rooms for group work; if necessary as block courses

Frequeny of Offering

- 1) Lecture each winter term
- 2) to be defined by ach program

Teaching Language

English

Valid from	Valid to	Version	Last updated	Decided on
WiSe 23/24		V.1 01	22.07.2024	