Bachelor	Civil Engineering
	HCU Hamburg

Module Number Modul Name Type (C/CE/E) Semester (proposed) Module Coordinator BIW-B-Mod-101 Engineering Mathematics I C 1 Prof. Dr.-Ing. Martin Jäschke

Subject Area		Duration
Basics of Civil Engineering Methods		1 Semester
CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
5 CP (= 150 h Workload)	4 (= 42 h Contact Time)	108 h

Objectives and Contents

Module Card

Objective of Qualification (competencies)

- Knowledge of the features of elementary functions of analysis
- Mastery of the rules of differential and integral calculus
- Application of geometric and physical/technical tasks

Contents

- Fundamentals of differential calculus; Integer sequences and limits, in particular arithmetical and geometric sequences
- Differentiation of power series and rational (linear fractional) functions; Differentiation rules (factor and sum, product, quotient and chain rules), higher order derivatives; Applications: simple tangent and cross-section problems, curvature, extreme value problems
- Fundamentals of integral calculus: Definite and indefinite integrals, fundamental theorem of differential and integral calculus
- Integration by substitution and partial integration
- Applications: calculation of surfaces, centroids, moments of plane area and solids of revolution
- Properties and curve sketching, differentiation, integration of elementary functions, including inverse functions: Trigonometric functions; Trigonometric conversions / addition theorems, trigonometric equations; Exponential, (hyperbolic) and logarithm functions, logarithmic graphing; Examples of use in physics: oscillation / vector diagram

Recommended Literature

Papula, Mathematik für Ingenieure; Vieweg-Verlag, Bd. I und II Leupold, W.; u.a.: Mathematik -ein Studienbuch für Ingenieure, Fachbuchverlag Leipzig, Bd. I und II Rjasanova, K: Mathematik für Bauingenieure; Hanser-Verlag

Teaching and Learning Methods

Lecture (2 Hours per Week) + Practical Seminar (2 Hours per Week) + Tutorial

Exam(s)

Precondition of Examination	
Type of Examination	Duration of Examination (if written or oral exam)
Written Exam	3 h
Composition of Module Mark	
Mark of Exam	

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)	
Knowledge acquired in preparatory course Mathematics (recommended)	
Applicability of Module	
Successful completion of this module is a prerequisite for the module, Hydraulic Engineering I (required).	
Frequency of Offering	

every Winter Semester	
Course Language	
German	

valid from	valid to	last updated
Sommer Semester 2017		25.09.2018

Bachelor	Civil Engineering
	HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-103	Technical Mechanics	С	1	Prof. DrIng. Peter- Matthias Klotz
Subject Area			Duration	

Basics of Civil Engineering Methods		1 Semester
CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
5 CP (= 150 h Workload)	5 (= 52,5 h Contact Time)	97,5 h

Objective of Qualification (competencies)

Module Card

Students will acquire basic knowledge about the support forces and action-effects of statically determinate structures. They will be able to calculate simple two-dimensional structures.

Contents

- Definition of forces and loads: Forces (effect, description, visualization), load assumptions
- Central system of forces: Calculation and drawing methods for adding and breaking down forces, equilibrium of forces
- Non-central system of forces: Calculation and drawing methods for adding and breaking down forces, equilibrium of forces, equilibrium of moments
- Support reaction of one- and several-part frames: Upright, inclined and angled girders, hinged girders, frames, plane frames
- Calculating moment diagrams: Upright, inclined and angled girders, hinged girders, frames, plane frames, torsional moment

Recommended Literature

Schneider: Bautabellen Bochmann, Michael: Statik im Bauwesen Teil 1 (Statisch bestimmte Systeme); Schumpich: Technische Mechanik Statik Lohmeyer: Baustatik 1 Grundlagen und Einwirkungen Schatz: Klausurtraining Statik Teaching and Learning Methods

Lecture and Practical Seminar (5 Hours per Week)

Exam(s)

Precondition of Examination		
Type of Examination	Duration of Examination (if written or oral exam)	
Written Exam	3 h	
Composition of Module Mark		
Mark of Exam		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)
School-level knowledge in mathematics and physics (recommended)
Applicability of Module
Required for the modules Geotechnics I and CAE (mandatory)
Frequency of Offering
every Winter Semester
Course Language
German

	valid from	valid to	last updated
Winter Semester 15/16			25.09.2018

Bachelor	Civil Engineering
	HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-104	Constructing Material Science I	С	1	Prof. DrIng. Gesa Kapteina

Subject Area		Duration
Basics of Civil Engineering Methods		1 Semester
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study
5 CP (= 150 h Workload)	4 (= 42 h Contact Time) + 7,5 h Contact Time Practical Laboratory Course	100,5 h

Module Card

- Basic knowledge of building materials with reference to their composition, structure, production, processing, mechanical and hygrothermal properties and material-specific damage processes

- Knowledge of measurement methods for determining characteristic material properties in the context of material testing
- Knowledge of structural engineering regulations

Objective of Qualification (competencies)

This facilitates a critical selection of building materials, and as the case may be, combinations of building materials with regard to their load-bearing capacity and fitness for use, while taking into account exposure conditions and structural engineering regulations.

Contents

- Structural engineering regulations
- Structure of materials
- Deformation and strength parameters
- Measurement techniques, non-destructive test procedures
- Metals: metallurgy fundamentals, production, properties, types and identification, welding, corrosion behavior and corrosion control
- Wood and wood-based materials
- Plastics
- Bitumen
- Glass

- Laboratory practical class: testing aggressive chemicals and building materials

Recommended Literature

Neroth, G.; Vollenschaar, D.: Wendehorst Baustoffkunde, Grundlagen-Baustoffe-Oberflächenschutz, 27. Auflage, VIEWEG+TEUBNER, 2011, ISBN 978-3-8351-0225-5

Teaching and Learning Methods

Lecture and Practical Seminar (4 Hours per Week) Practical Laboratory Course I: 5 units, 7,5 h total

Exam(s)

Precondition of Examination	
Successful preliminary test performance, laboratory practical class with 80% mandatory attendance and lab protocols	
Type of Examination Duration of Examination (if written or oral exam)	
Pre-Assignment: Documentation of Practical Laboratory Course Examination: Written Exam	
Composition of Module Mark	

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Applicability of Module

Frequency of Offering

every Winter Semester

Course Language

valid from	valid to	last updated
Summer Semester 2017		25.09.2018

Bachelor	Civil Engineering
	HCU Hamburg

Module Care	b		В	achelor Civil Engineering HCU Hamburg
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-105	Building Construction and CAD	С	1 + 2	Prof. DrIng. Peter- Matthias Klotz
	Subject Area Duration			
Basics of Design and Construction		2 Semester		

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
12,5 CP (= 375 h Workload)	10 (= 105 h Contact Time)	265 h

bjective of Qualification (competencies)
tudents will acquire basic knowledge of supporting framework structures in building construction as well as selected issues of kpansion. They will be able to plan integral structures and construction systems of individual structural com-ponents taking to consideration static and structural-physical relationships. tudents will acquire basic knowledge and skills in computer-supported designing, structuring and rendering.
ontents
Building Construction I:
 Fundamentals: Types of supporting structures, regulations, load assumptions, planning procedure, construction drawings Masonry: Types of, modular coordination, structural rules, load-bearing masonry walls, double-leaf exposed masonry Walls: Exterior walls (types and their construction), bracing and stability, load-bearing interior and light partition walls Stairs: Requirements, types and their construction, railing Windows: Types, installation guidelines (statics, windproofing and airtightness, thermal insulation, sound insulation)
Building Construction II:
 Ceilings: Solid ceilings, wooden beam ceilings, steel girder and composite ceilings, vault ceilings Roofs: Roof coverings and seals, roof flashing, inclined roof construction, engineer-quality roof construction, flat roofs (warm and cold roofs) Chimneys Sealing and drainage: Types of seals for soil moisture, with and without water pressure, drainage Excavations and foundations: Excavations, deepening and underpinning, shallow foundations
Skills – CAD:
 Fundamentals of descriptive geometry and technical drawing Analysis of constructions and their projection in CAD software with the aid of coordinate systems Constructing virtual 3D models for examining functional plausibility Development and modification of complex unitized components for efficient construction planning Output of final plans to scale Implementation of basic project structures of building practice in a CAD application
ecommended Literature
rick, Knöll, Neumann, Weinbrenner: Baukonstruktionslehre chneider, Wormuth, Dierks: Baukonstruktion ittag: Baukonstruktionslehre chneider: Bautabellen für Ingenieure utoCAD Grundlagen; AutoCAD 2D; AutoCAD 3D; Herdt Verlag
eaching and Learning Methods
uilding Construction I, 5 CP: Lecture and Practical Seminar (4 Hours per Week) uilding Construction II, 5 CP: Lecture and Practical Seminar (4 Hours per Week) AD, 2,5 CP: Practical Seminar in Computer-Pool (2 Hours per Week)

Exam(s)

Precondition of Examination	
Attendance in CAD is mandatory.	
Type of Examination	Duration of Examination (if written or oral exam)
Building Construction I+II (Module): Term Paper and Colloquium CAD: Term Paper (Re-Examination in Summer Semester is a Written Exam, 90 Minutes)	
Composition of Module Mark	

Additional Information

Winter Semester 15/16

Previous Knowledge / Conditions for Participation (in form and content)		
General knowledge of the Windows opera	ting system (recommended)	
Applicability of Module		
Successful completion of this module is re-	equired for enrolling in the module CAE (mai	ndatory).
Frequency of Offering		
Building Construction I and CAD: every Winter Semester Buidling Construction II: every Summer Semester		
Course Language		
German		
valid from valid to last updated		last updated

04.12.2019

Bachelor	Civil Engineering
	HCU Hamburg

				e e e e e e e e e e e e e e e e e e e
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-201	Engineering Mathematics II	С	2	Prof. DrIng. Martin Jäschke
	Duration			
Basics of Civil Engineering Methods				1 Semester

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
5 CP (= 150 h Workload)	4 (= 42 h Contact Time)	108 h

Module Card

Objective of Qualification (competencies)

- Knowledge of the fundamentals of the mentioned subjects, creating a facility with mathematical methods

- Application to physical and technical problems

Contents

- Differential equations (DE): DE with separable variables, linear DE with 1st and 2nd order constant coefficients
- Examples of application, DE problem setups
- Series expansion as method of approximation: (Power) series and convergence, Taylor series, standard series combinations, application of series as approximation and numerical integration
- Calculating probability and descriptive statistics: Fundamentals, combinatorics, distributions, especially: binomial, Poisson and normal Gauss distribution
- Multivariable functions: Graphing, geometric applications, partial derivatives, propagation of uncertainty
- Linear algebra: Elementary 2D and 3D vector analysis, scalar and vector products
- Geometric applications: intersections of straight lines and planes
- Matrices: multiplication, determinants
- Solving systems of linear equations (Gaussian elimination among others)

Recommended Literature

Papula, Mathematik für Ingenieure; Vieweg-Verlag, Bd. I und II Leupold, W.; u.a.: Mathematik -ein Studienbuch für Ingenieure, Fachbuchverlag Leipzig, Bd. I und II Rjasanova, K: Mathematik für Bauingenieure; Hanser-Verlag

Teaching and Learning Methods

Lecture (2 Hours per Week) + Practical Seminar (2 Hours per Week) + Tutorial

Exam(s)

Precondition of Examination				
None. Pre-Assignment is not mandatory any more.				
Type of Examination	Duration of Examination (if written or oral exam)			
Written Exam 3 h				
Composition of Module Mark				
Mark of Exam				

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)	
Module Engineering Mathematics I (recommended)	
Applicability of Module	

Frequency of Offering

every Summer Semester

Course Language

valid from	valid to	last updated
Summer Semester 2017		25.09.2018

Bachelor C	ivil Engineering
	HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-202	Construction Physics	С	2 + 3	Prof. DrIng. Peter- Matthias Klotz

Subject Area	Duration	
Basics of Civil Engineering Me	2 Semester	
CP (according to ECTS)	Self-study	
5 CP (= 150 h Workload)	4 (= 42 h Contact Time) + 6 h Practical Laboratory Course	102 h

Module Card

Objective of Qualification (competencies)

- Physical understanding of simple relationships in thermodynamics and acoustics as well as fundamentals of thermal insulation, humidity protection and sound insulation, including their application in building practice

Conducting physical experiments, documentation, evaluation

Contents

- Construction Physics I: Heat and humidity

- Introduction: motivation and overview of the contents and disciplines of construction physics
- Fundamentals of thermal dynamics
- Stationary heat transfer through transmission; heat conduction, heat conductivity, heat transfer; multilayered components, temperature profiles, balance of heat transfer; thermal bridges
- Thermal radiation and summer thermal insulation
- Unsteady-state heat transfer
- Thermal balance of a building: losses and gains, significance of the building's shape, final and primary energy requirements, calculating transmission heat loss, ventilation, physiological foundations, ventilation rate, ventilation heat loss, solar gains, interior heat gains, select basics of the Energy Saving Regulation (EnEV), simple example calculations - Behavior of gases, state changes
- Humidity: vapor pressure, saturated vapor pressure, dew point
- Moisture transfer processes, balance of water vapor in buildings, surface condensation, water vapor diffusion (Glaser diagram), calculating condensation, moisture damage
- Practical laboratory course I: heat capacity (calorimetry) and moisture (dew point) experiments
- Construction Physics II: Sound
- Oscillation: harmonic, damped, forced resonance, overlapping
- Sound waves: wave types, traveling and standing waves (modes), spectral analysis
- Amplitude: particle velocity, acoustic pressure, sound energy density, sound intensity, sound level, addition of sound energy/levels
- Sound perception: frequency range of audible sound, loudness, A-weighting, equivalent continuous sound level
- Sound propagation effects: sound sources and inverse square laws, reflection, absorption, transmission, sound refraction and diffraction (shielding) (basis of urban noise control)
- Room acoustics: target values, theory of reverberation, diffuse sound field, sound absorbers, optimization and room design - Stationary sound field / noise mitigation measures
- Architectural acoustics / sound insulation in building construction: Airborne sound insulation of single-leaf pliable components (mass law), sound level difference between rooms, bending waves, coincidence, weighted sound reduction index
- Cavity walls, double wall resonance
- Sound reduction indexes of one-leaf and cavity wall and ceiling insulations according to DIN 4109 and, if appli-cable, ISO 12354
- Sound insulation of adjacent components
- Influence of flanking transmission
- Main features of impact (footfall) sound insulation
- Practical laboratory course II: experiments with oscillation and elastic modulus

Recommended Literature

Berber, J.; Bauphysik - Wärmetransport, Feuchtigkeit, Schall; Voigt-Verlag;

Hering, E.; et.al., Physik für Ingenieure; VDI-Verlag;

Krawietz, R.; Heimke; W.; Physik im Bauwesen - Grundwissen und Bauphysik ; Fachbuchverlag Leipzig im Hanser-Verlag; Fischer, H.M. et.al.; Lehrbuch der Bauphysik; Teubner, Stuttgart

Fasold, W., Veres, E: Schallschutz und Raumakustik in der Praxis; Verlag für Bauwesen, Berlin

Liersch, K.W.: Bauphysik kompakt, Wärme-und Feuchteschutz;

Zürcher, Ch.; Bauphysik- ein Repititorium; vdf-Verlag d.Fachvereine Zürich aus der Reihe BBB; Bauwerk Verlag Berlin 200 Teaching and Learning Methods

Construction Physics I, 2,5 CP: Lecture (1 Hours per Week) + Practical Seminar (1 Hour per Week) + Tutorial Practical Laboratory Course: 2 units each 1,5 h Construction Physics II, 2,5 CP: Lecture (1 Hours per Week) + Practical Seminar (1 Hour per Week) + Tutorial Practical Laboratory Course: 2 units each 1,5 h

Exam(s)

Precondition of Examination				
Successful preliminary examination, passing mark on term paper and laboratory practical (mandatory attendance). Term papers are offered every semester, the laboratory practical once a year.				
Type of Examination	Duration of Examination (if written or oral exam)			
Construction Physics I: Pre-Assignment: Documentation of Practical, Laboratory Course, Tests Examination: Written Exam				
Construction Physics II: Pre-Assignment: Documentation of Practical, Laboratory Course, Tests Examination: Written Exam Composition of Module Mark				
Mark of Exam Construction Physics I 50% and Construction Physics II 50%				

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Knowledge and skills acquired in school physics (equivalent to a min. 3 years) or the preparatory course, Physics (strongly recommended), Engineering Mathematics (strongly recommended) and for Construction Physics II, Enginee-ring Mathematics II Differential Equations (recommended)

Applicability of Module

Frequency of Offering

Construction Physics I: every Summer Semester Construction Physics II: every Winter Semester

Course Language

valid from	valid to	last updated
Summer Semester 2017		27.09.2018

Bachelor Civil Engineering
HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-203	Theory of Material Strength	С	2	Prof. DrIng. Peter- Matthias Klotz
Subject Area				Duration
Basics of Civil Engineering Methods				1 Semester

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
5 CP (= 150 h Workload)	4 (= 42 h Contact Time)	108 h

Module Card

Objective of Qualification (competencies)	
Students will gain basic knowledge of the relationships among stress rescapable of creating simple designs using components made of homogeneous	
Contents	
- Stress and normal force: Definition: stress, strain, lateral strain, Young's strains	s modulus, Hooke's law; calculating stresses and
- Stresses resulting from uniaxial bending with and without normal force: plane;section properties; normal stresses; compound sections; Steiner's	
- Normal stresses with biaxial bending with and without normal force: Syr	nmetrical cross-sections; asymmetrical cross-sections
- Shear stresses resulting from lateral force: Shear stresses in vertical an shear stress with solid cross sections; parallel-axis compound sections	d horizontal sections (fundamentals); calculating
- Shear stresses	
- Torsion: Definition of torsion, warp, twist; shear stresses in solid cross-s sections	sections and thin-walled open and closed cross-
Recommended Literature	
Detailed reading (i.e. relevance, library availability) will be announced in t Schneider: Bautabellen Göttsche, Petersen: Festigkeitslehre klipp und klar Holzmann: Technische Mechanik Festigkeitslehre Lohmeyer: Baustatik 2 Bemessung und Festigkeitslehre	he first class meeting.
Teaching and Learning Methods	
Lecture and Practical Seminar (4 Hours per Week)	

Exam(s)

Precondition of Examination		
Type of Examination	Duration of Examination (if written or oral exam)	
Written Exam	2 h	
Composition of Module Mark		
Mark of Exam		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)
Applicability of Module
Frequency of Offering
every Summer Semester

Course Language			
German			
valid from	valid to	last updated	
Winter Semester 16/17	Valid to	28.09.2018	

Bachelor	Civil I	Engine	ering
	HC	U Ham	burg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-204	Constructing Material Science II	С	2	Prof. DrIng. Gesa Kapteina

Subject Area	Duration	
Constructing Material Science II		1 Semester
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study
5 CP (= 150 h Workload)	4 (= 42 h Contact time) + 18 h Contact Time Practical Laboratory Course)	90 h

Module Card

- Basic knowledge of building materials with reference to their composition, structure, production, processing, mechanical and hygrothermal properties and material-specific damage processes

- Knowledge of measurement methods for determining characteristic material properties in the context of material testing
- Knowledge of structural engineering regulations

Objective of Qualification (competencies)

This facilitates a critical selection of building materials, and as the case may be, combinations of building materials with regard to their load-bearing capacity and fitness for use while taking into account exposure conditions and structural engineering regulations.

Contents

- Aggregates
- Binders
- Concrete, mix design, production and processing, deformation and strength parameters, material tests, non-destructive test procedures, durability, special types of concrete
- Masonry
- Laboratory practical class: making and testing concrete

Recommended Literature

Neroth, G.; Vollenschaar, D.: Wendehorst Baustoffkunde, Grundlagen-Baustoffe-Oberflächenschutz, 27. Auf-lage, VIEWEG+TEUBNER, 2011, ISBN 978-3-8351-0225-5 Zementmerkblätter, Herausgeber: Informationszentrum Beton GmbH, online verfügbar Hiese, W.; Backe, H.; Möhring, R.: Baustoffkunde: für Ausbildung und Praxis, Werner Verlag, 12. Auflage Teaching and Learning Methods Lecture and Practical Seminar (4 Hours per Week) Practical Laboratory Course I: 8 units, 18 h total Excursion (optional)

Exam(s)

Precondition of Examination			
Successful preliminary test performance, laboratory practical class with 80% mandatory attendance and lab protocols			
Type of Examination	Duration of Examination (if written or oral exam)		
Pre-Assignment: Documentation of Practical Laboratory Course Examination: Written Exam	2 h		
Composition of Module Mark			
Mark of Exam			

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Applicability of Module				
Frequency of Offering	Frequency of Offering			
every Summer Semester				
Course Language				
German				
valid from	valid to	last updated		
Summer Semester 2017		30.10.2018		

Bachelor Civil Engineering HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-301	Statics of Structures	С	3 + 4	Prof. DrIng. Annette Bögle

Subject Area	Duration	
Basics of Civil Engineering Met	2 Semester	
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study
10 CP (= 300 h Workload)	8 (= 84 h Contact Time)	216 h

Objectives and Contents

Module Card

Objective of Qualification (competencies)
- Students will gain competence in basic assumptions, principles and methods of statics (idealization and discretization of static tasks, introduction to principles of work and energy and basic design methods)
- Students will learn the computational analysis of load-bearing behavior by calculating the stress resultants and deformation of statically determinate and indeterminate systems
- Students will acquire professional competence in interpreting and critically evaluating calculation results
Contents
 Statics of Structures I: Introduction and Fundamentals: The functions of statics, model assumptions, design method basics Statically determinate structures: Force and deformation values, moment diagrams, kinematics, deformation calculation methods, qualitative evaluation of bending lines, differential equation of bending line Principles of work and energy & working principles: Virtual work, principle of virtual displacements, principle of virtual forces Influence lines of statically determinate structures for force and displacement values Fundamentals of spatial structures Statics of Structures II: Statically determinate and statically indeterminate structures: Definitions, advantages and disadvantages, determining degree of static indeterminacy
 Flexibility method: Fundamentals, method explanation, compatibility conditions, deformation actions, replacement of unloaded subsystems with tonguing, deformation calculation with the reduction theorem, three-moment equation for analysis of statically indeterminate continuous beams Displacement method / Slope-deflection method: Basics, method explanation, kinematic determinacy, difference between general displacement method and slope-deflection method, application to computer methods Influence lines of statically indeterminate structures for force and displacement values Non-linear structures: Equilibrium in deformed structures, components of compromised stability: flexural buckling, effective buckling length coefficients, substitute member length, theory II. order, basics of cable geometry
Recommended Literature
Dallmann, R.: Baustatik 1, Carl Hanser Verlag, München, 2013. Dallmann, R.: Baustatik 2, Carl Hanser Verlag, München, 2012. Dallmann, R.: Baustatik 3, Carl Hanser Verlag, München, 2009. Dinkler, D.: Grundlagen der Baustatik, Springer Vieweg, Wiesbaden, 2014.
Teaching and Learning Methods
Statics of Structures I, 5 CP: Lecture and Practical Seminar (4 Hours per Week) Statics of Structures II, 5 CP: Lecture and Practical Seminar (4 Hours per Week)

Exam(s)

Precondition of Examination	
passed Pre-Assignment	
Type of Examination	Duration of Examination (if written or oral exam)
Statics of Structures I: Pre-Assignment: Term Paper Statics of Structures II: Pre-Assignment: Term Paper Examination (module): Written Exam	Written Exam 3 h
Composition of Module Mark	
Mark of Exam	

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

For this module knowledge and skills from the modules Technical Mechanics and Engineering Mathematics I are recommended.

Applicability of Module

Frequency of Offering			
Statics of Structures I: every Winter Semester Statics of Structures II: every Summer Semester			
Course Language			
German			
valid from	valid to	last updated	
Winter Semester 15/16		25.09.2018	

108 h

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-302	Basics of Designing Building Structures	С	3	Prof. DrIng. Annette Bögle
Subject Area			Duration	
Basics of Design and Construction			1 Semester	
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study		

4 (= 42 h Contact Time)

Objectives and Contents

5 CP (= 150 h Workload)

Module Card

Objective of Qualification (competencies)
- Students will gain competence in and basic knowledge of structural design in the context of architecture, load-bearing forms, structural framework design, construction and engineering performance.
- Students will acquire the skill of recognizing various types of support structures in real projects as well as the ability to formulate their respective requirements.
- Students gain competence in identifying and analyzing building structures with regards to their main supporting features.
Contents
 Structural design as part of engineering competence: Fundamentals of design, collaboration between architects and engineers assignment of project planning and framework planning tasks)
 Load-bearing structure requirements: Design, function, value; cost effectiveness: building costs, maintenance expenses; sustainability, durability; planning and realization processes: planning time, construction period
 Designing load-bearing structures: Load transfer principles and static systems: cable, arch, truss, beam, frame, disk, supporting member; bracing systems; preliminary dimensioning, measuring with empirical formulas
- Load-bearing structure analysis: Identification of load-bearing components, design, hierarchy and static systems
- Rendering load-bearing structures: Introduction to model making
Recommended Literature
Allen, E.; u.a.: Form and Forces, john Wiley and Sons, Hoboken, 2010. Block, P.; u.a.: Faustformel Tragwerksentwurf, Deutsche Verlags-Anstalt, München, 2013. Muttoni, A.: The Art of Structures, EPFL Press, Lausanne, 2011. Staffa, M.: Tragwerkslehre Grundlagen, Gestaltung, Beispiele, Beuth Verlag GmbH, Berlin Wien Zürich, 2014. Stöffler, J.; Samberg, S.: Tragwerksentwurf für Architekten und Bauingenieure, Bauwerk Verlag GmbH, Berlin,
Teaching and Learning Methods
Lectures and Workshops (4 Hours per Week) Excursion (optional)
Exam(s)

Precondition of Examination				
Type of Examination	Duration of Examination (if written or oral exam)			
Term Paper				
Composition of Module Mark				
The term paper consists of various tasks. The exact composition of the overall grade will be announced at the begin-ning of the semester.				

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Applicability of Module

Prerequisite for the module Designing Building Structures (recommended)

Frequency of Offering

every Winter Semester

Course Language

valid from	valid to	last updated
Winter Semester 15/16		01.11.2018

Module Carc			Ba	achelor Civil Engineering HCU Hamburg
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-303	Geotechnics I	С	3	Prof. DrIng. habil. Kerstin Lesny
	Subject Area			Duration
Structural Engineering			1 Semester	
CP (ac	CP (according to ECTS) Contact Hours/Week (SWS)		Hours/Week (SWS)	Self-study
	= 150 h Workload)		18 h Contact Time)	102 h

Objective of Qualification (competencies)
Students will learn various soil types and be able to describe and classify them. They will understand the soil mechanic behavior of soils, such as deformation and strength behavior, as well as their behavior when influenced by groundwater flow. They will be able to solve relevant problems. Further, they will gain familiarity with site investigation methods as well as soil mechanical laboratory and field experiments for determining soil parameters.
Contents
- Soil types and their formation; description and classification of soils
- Site investigation procedures
- Water in soil; groundwater flow
- Deformation behavior of soils (subsidence and consolidation)
- Strength behavior of soils (states of failure, earth pressure and earth resistance
- Determination of soil mechanical parameters
Recommended Literature
for example: Kolymbas, D. (2011): Geotechnik : Bodenmechanik, Grundbau und Tunnelbau, Springer Verlag, Berlin Möller, G. (2013): Geotechnik: Bodenmechanik, 2. Auflage, Verlag Ernst & Sohn, Berlin Möller, G. (2012): Geotechnik: Grundbau, 2. Auflage, Verlag Ernst & Sohn, Berlin
Teaching and Learning Methods
Lecture and Practical Seminar (4 Hours per Week) Practical Laboratory Course (4 h, Compulsory Attendance)

Exam(s)

Precondition of Examination			
passed Pre-Assignment			
Type of Examination	Duration of Examination (if written or oral exam)		
Pre-Assignment: Laboratory Practical Course and Documentation (offered only Winter Semester) Examination: Written Exam	Written Exam 2 h		
Composition of Module Mark			
Mark of Exam			

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Prerequisites include: the knowledge and skills acquired in the modules Engineering Mathematics I and II, Strength of Materials and Statics of Structures. The module Technical Mechanics must be completed upon enrolment (mandatory). Applicability of Module

Frequency of Offering

every Winter Semester	
Course Language	
German	

valid from	valid to	last updated
Summer Semester 2017		25.09.2018

Bachelor Civil Engineering
HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-304	Basics of Law	С	3	Prof. Martin Wickel Prof. Friedrich-Karl Scholtissek
Subject Area			Duration	
Construction Management		1 Semester		
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study		
5 CP (= 150 h Workload) 4 (= 42 h Contact Tim		2 h Contact Time)	108 h	

Module Card

Objective of Qualification (competencies)
Attainment of the competence to recognize the central instruments of public building law and to be able to integrate them into the constitutional and administrative context
Contents
 Public Building Law (FaSt Basics, BS-B-Mod-003): 1. Constitutional foundations of building law (i.e. fundamental rights, state organization, especially legisla-tive and administrative powers) 2. Administrative foundations of building law (i.e. sources of law, administrative organization, administrative procedures) 3. Plans 3.1 Urban land-use planning (zoning) 3.1.1Procedures and content requirements 3.1.2BauNVO 3.2 Spatial development and technical planning 4. Construction projects (residence, administration, infrastructure, industry) 4.1 Building permit 4.2 Legal material requirements 4.3 Other forms of permission (i.e. license for emission control handling; planning approval) 4.4 Requirements of environmental law
 Private Building Law: 1. Introduction to the basic concepts of law 2. Contract for services in accordance with the Federal Building Code (BGB) 3. Accepted engineering standards 4. Fee Structure for Architects and Engineers (HOAI) 5. Federal Construction Contract Procedures (VOB) – Sections A, B, and C
Recommended Literature
Public Building Law: literature varies by term, will be announced at first meeting
Teaching and Learning Methods
Public Building Law, 2,5 CP: Lecture (2 Hours per Week) Private Building Law, 2,5 CP: Lecture (2 Hours per Week)

Exam(s)

Precondition of Examination		
Type of Examination	Duration of Examination (if written or oral exam)	
Public Building Law: Written Exam Public Building Law: Written Exam 1,5 h Private Building Law: Written Exam Private Building Law: Written Exam 1,5 h		
Composition of Module Mark		
Mark of exam: Written Exam Public Building Law 50% and Private Building Law 50%		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Applicability of Module			
Frequency of Offering			
every Winter Semester			
Course Language			
German			
valid from valid to last updated			
Winter Semester 15/16		25.09.2018	

Bachelor C	ivil Engineering
	HCU Hamburg

105 h

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-306	Hydraulic Engineering I	С	3	Prof. DrIng. habil. Kerstin Lesny
Subject Area			Duration	
Technical Infrastructure			1 Semester	
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study		

4,3 (= 45 h Contact Time)

Objectives and Contents

Objective of Qualification (competencies)

5 CP (= 150 h Workload)

Module Card

Students will understand the meaning of hydromechanics within the specialist disciplines, hydrology/water management and hydraulic engineering. They will master the fundamentals of hydrostatics and hydrodynamics as well as the sedi-ment transport. Building on this, they will be able to perform simple hydraulic calculations for pipes and open channels. They will be further familiarized with the possibilities and limits of hydraulic laboratory practice. Contents - Meaning of hydromechanics within the specialist disciplines hydrology/water management/hydraulic engineering - Hydrostatics (i.e. water pressure on flat and curved surfaces, buoyancy) - Laws of hydrodynamics (conservation of mass, conservation of energy, momentum equation, energy and friction losses) - Description and calculation of pipe and open-channel flow - Fundamentals of sediment transport - Hydrodynamics of coastal areas (tides, waves and swell) - Hydraulic laboratory practice (modeling regularities, hydromechanical models, conducting simple experiments to understand hydromechanical processes) **Recommended Literature** for example: Aigner, D.; Bollrich, G. (2015): Handbuch der Hydraulik: für Wasserbau und Wasserwirtschaft (1), Beuth Verlag, Berlin Lechler, K.; Lühr, H.-P., Zanke, U. (2015): Taschenbuch der Wasserwirtschaft, Verlag Springer Vieweg, Wiesbaden Zanke, U. C. E. (2002) Hydromechanik der Gerinne und Küstengewässer, Paul-Parey Buchverlag, Berlin. **Teaching and Learning Methods** Lecture and Practical Seminar (4 Hours per Week) Practical Laboratory Course (3 h, Compulsory Attendance) Exam(s) Precondition of Examination passed Pre-Assignment

Type of Examination	Duration of Examination (if written or oral exam)
Pre-Assignment: Laboratory Practical Course and Documentation (offered only Winter Semester) Examination: Written Exam	
Composition of Module Mark	
Mark of Exam	

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Prerequisites include: knowledge and skills acquired in the modules, Engineering Mathematics I, Engineering Mathe-matics I and Technical Mechanics (recommended). The module, Engineering Mathematics I must be completed (man-datory).

Applicability of Module

Frequency of Offering

every Winter Semester

Course Language

valid from	valid to	last updated
Summer Semester 2017		25.09.2018

Module Card Type (C/CE/E) Module Number Modul Name Semester Module Coordinator (proposed) Prof. Dr.-Ing. Annette Bögle BIW-B-Mod-402 **Designing of Building Structures** С 4

		Bogle
Subject Area	Duration	
Basics of Design and Construction		1 Semester
CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
5 CP (= 150 h Workload)	2 (= 21 h Contact Time)	129 h

Objectives and Contents

Objective of Qualification (competencies)		
- Students will acquire the skills necessary to apply their knowledge of load-bearing structure design in their own discipline- specific project.		
- Students will acquire the skill of integrating installments into the design and planning processes.		
- Students gain competence in independently conducting a c	design project in the field of load-bearing structures.	
Contents		
- Introduction to the task: Presentation of the context of the c	design task: location and content	
- Input workshops on specific subjects:		
 Team formation and acquaintance with the task Project-relevant subjects (such as frame, functionality, ex Rendering (plans, models) 	ecuting an idea, detailing)	
- Corrective feedback: Students and teachers will meet in voluntary and mandatory feedback sessions distributed throughout the semester. The students' current state of progress and any arising issues will be addressed; problems will be addressed and solutions formulated.		
 Presentation: Mandatory presentations occur on specific da one's own project to an audience as well as for the teacher 	ates throughout the semester. They are an opportuni-ty to convey is to discuss students' individual projects.	
- Independent discipline-specific teamwork		
Recommended Literature		
Albert, A. (Hrsg.): Schneider Bautabellen für Ingenieure, Bur Block, P.; u.a.: Faustformel Tragwerksentwurf, Deutsche Ve Kister, J.: Neufert Bauentwurfslehre, Vieweg & Sohn Verlag, Staffa, M.: Tragwerkslehre Grundlagen, Gestaltung, Beispie Stöffler, J.; Samberg, S.: Tragwerksentwurf für Architekten u Wüstenrot Stiftung (Hrsg.): Raumpilot Grundlagen, Karl Krae	rlags-Anstalt, München, 2013. Wiesbaden, 2012. le, Beuth Verlag GmbH, Berlin Wien Zürich, 2014. Ind Bauingenieure, Bauwerk Verlag GmbH, Berlin, 2002.	
Teaching and Learning Methods		
Lecture and Project (2 Hours per Week) Excursion (optional)		
Exam(s)		
Precondition of Examination		
Mandatory Attendance at (interim) Presentations, Workshop	s and Excursions	
Type of Examination	Duration of Examination (if written or oral exam)	
Documentation and Presentation		
Composition of Module Mark		
Presentation and Documentation are graded. The composition semester.	on of the overall grade will be announced at the beginning of the	

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Skills and knowledge acquired in Basics of Designing Building Structures (recommended)

Applicability of Module

Frequency of Offering

every Summer Semester

Course Language

valid from	valid to	last updated
Winter Semester 15/16		01.11.2018

Module Card			В	HCU Hamburg
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-403	Geotechnics II	С	4	Prof. DrIng. habil. Kerstin Lesny
Subject Area			Duration	
Structural Engineering			1 Semester	
CP (ac	cording to ECTS)	Contact H	lours/Week (SWS)	Self-study
5 CP (= 150 h Workload)		4 (= 42	h Contact Time)	108 h

Objective of Qualification (competencies)
Students will understand the basic principles of various geotechnical structures, such as shallow and deep foundations as well as simple systems of revetment and dewatering. They will be able to describe the static system as well as the load transfer behavior of these systems and to dimension these according to the Eurocode 7 and DIN 1054 design rules.
Contents
- Safety concept and design rules according to Eurocode 7 and DIN 1054
- Load-bearing capacity and fitness for use of shallow foundations (individual and strip footing)
- Load-bearing capacity and fitness for use of pile foundations (axially loaded piles)
- Slope stability
- Building pit sheeting design for simple static systems
- Dewatering basics
Recommended Literature
for example: Kolymbas, D. (2011): Geotechnik : Bodenmechanik, Grundbau und Tunnelbau, Springer Verlag, Berlin Möller, G. (2012): Geotechnik: Grundbau, 2. Auflage, Verlag Ernst & Sohn, Berlin Ziegler, M. (2012): Geotechnische Nachweise nach EC 7 und DIN 1054, Verlag Ernst & Sohn, Berlin
Teaching and Learning Methods
Lecture and Practical Seminar (4 Hours per Week) Excursion (optional)

Exam(s)

Precondition of Examination		
Type of Examination	Duration of Examination (if written or oral exam)	
Written Exam	2h	
Composition of Module Mark		
Mark of Exam		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)
Prerequisites include: the knowledge and skills acquired in the modules, Engineering Mathematics I and II, Strength of Materials and Statics of Structures (recommended). The module, Technical Mechanics, must be completed upon en-rolment (mandatory).
Applicability of Module

Frequency of Offering every Summer Semester

Course Language			
German			
valid from	valid to	last updated	
		00.40.0040	

valid from	valid to	last updated
Winter Semester 16/17		30.10.2018

Bachelor Ci	vil Engineering
	HCU Hamburg

216 h

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-404	Steel and Timber Structures	С	4 + 5	Prof. DrIng. Manuel Krahwinkel
Subject Area			Duration	
Structural Engineering			2 Semester	
CP (according to ECTS) Contact Hours/Week (SWS)			Self-study	

8 (= 84 h Contact Time)

Objectives and Contents

10 CP (= 300 h Workload)

Module Card

ctive of Qualification (competencies)
ents will master the fundamentals of structural components and connections as well as the structural detailing of load ng structures in timber and steel construction engineering.
ents
el construction engineering
amples of completed steel structures astic and plastic limit loads of cross-sections elded and screwed connections esign and construction of a load-bearing structure exural buckling, lateral torsional buckling, plate buckling
ber engineering
amples of completed timber structures bod as material esign onnections deways buckling iddle roof girders
mmended Literature
nann, R.; Krüger, U.: Stahlbau, Teil 1: Grundlagen, 5. Auflage, Ernst & Sohn, 2013 ıg, F.: Holzbau, 4. Auflage, Springer Vieweg, 2014 winkel, M.; Kindmann, R.: Stahl- und Verbundkonstruktionen, 3. Auflage, Springer Vieweg, 2016
hing and Learning Methods
and Timber Structures I, 5 CP: Lecture and Practical Seminar (4 Hours per Week) and Timber Structures II, 5 CP: Lecture and Practical Seminar (4 Hours per Week)

Exam(s)

Precondition of Examination			
Type of Examination	Duration of Examination (if written or oral exam)		
Steel and Timber Structures I+II (module): Written Exam 3 h			
Composition of Module Mark			
Mark of Exam			

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)
Prerequisites include: knowledge and skills acquired in Technical Mechanics, Strength of Materials and Statics of Structures (recommended).
Applicability of Module

Frequency of Offering

Steel and Timber Structures I: every Summer Semester

Steel and Timber Structures II: every Winter Semester		
Course Language		
German		
valid from	valid to	last updated
Winter Semester 16/17		28.09.2018

Bachelor Civil Engine	ering
HCU Har	nburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-405	Concrete Structures	С	4 + 5	Prof. DrIng. Klaus Liebrecht
Subject Area				Duration
Structural Engineering				2 Semester

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
10 CP (= 300 h Workload)	8 (= 84 h Contact Time)	216 h

Module Card

Objective of Qualification (competencies)	
Students will learn basic knowledge and skills of calculation methods in concrete cor building of structural elements commonly used in the structural engineering of concre module students should be able to design and dimension simple concrete structures students to expand their knowledge accordingly to meet the demands of practice.	ete structures. On completion of the
Contents	
 Fundamentals Load-bearing structural forms and structural elements in reinforced concrete constr - Load-bearing characteristics of concrete structures/durability/safety concept Features of internal forces determination Bearing length / moment distribution / section moments Bending analysis Fundamentals of bending calculation / design method Calculation of square cross-sections and T-beam cross-sections Limiting span/depth ratio Shear design Fundamentals / design method / shear force roofing Types of reinforcement and reinforcement guidelines General reinforcement guidelines / bond stresses / anchorages Overlap joints / tensile roof covering / layout of reinforcement Design and construction of continuous beams Determining permissible stress / design / structural details / rules of reinforcement Design and construction of uniaxial and biaxial plate load-bearing structures Determining permissible stress / design / structural details / rules of reinforcement Design and construction of stairs Load-bearing structural forms / determining permissible stress / reinforcement layou Design for bending and normal force Uniaxial bending and normal force / biaxial bending and normal force Buckling safety checks Effective length and slenderness / centrically loaded supports Fundamentals of theory II order Simplified design methods for isolated compression members with uniaxial relative Analysis of usability limit state Analysis of steel stress; analysis of concrete compressive stresses; analysis of crace 	ut
Recommended Literature	
Goris, Alfons: Stahlbetonbau-Praxis nach Eurocode 2, Band I u. II, ab 5. Auflage, Be Avak, Conchon, Aldejohann: Stahlbetonbau in Beispielen Teil 1, ab 7. Auflage, Bund Wommelsdorff: Stahlbetonbau – Bemessung und Konstruktion Teil 1, ab 8. Aufl., Wo Schneider: Bautabellen für Ingenieure, ab 20. Auflage, Köln, Werner Verlag	esanzeiger Verlag, Köln (2016)
Teaching and Learning Methods	
Concrete Structures I, 5 CP: Lecture and Practical Seminar (4 Hours per Week) Concrete Structures II, 5 CP: Lecture and Practical Seminar (4 Hours per Week)	

Precondition of Examination Type of Examination Duration of Examination (if written or oral exam)

Concrete Structures I+II (module): Written Exam Note: A voluntary homework assignment will be given.	3 h
Composition of Module Mark	
Mark of Exam	

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)			
Prerequisites include: knowledge and skil	Prerequisites include: knowledge and skills acquired in Theory of Material Strength and Statics of Structures (recom-mended).		
Applicability of Module			
Frequency of Offering			
Concrete Structures I: every Summer Semester Concrete Structures II: every Winter Semester			
Course Language			
German			
valid from	valid to	last updated	

valid from	valid to	last updated
Winter Semester 16/17		28.09.2018

Bachelor Civil	Engineerin
H	CU Hambur

105 h

g

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-406	Hydraulic Engineering II	С	4	Prof. DrIng. habil. Kerstin Lesny
Subject Area			Duration	
Technical Infrastructure			1 Semester	
CP (according to ECTS) Contact Hours/Week (SW			Hours/Week (SWS)	Self-study

4,3 (= 45 h Contact Time)

Objectives and Contents

5 CP (= 150 h Workload)

Module Card

Objective of Qualification (competencies) Students will gain mastery of the standard hydrological basics and become familiar with the essential aspects of water management planning and development tasks. They will become acquainted with various approaches to the developme flowing water, including river engineering facilities and renaturation. They will understand the construction, expansion an principles of operation of navigable waterway construction and flood protection facilities and are able to design and calcu- the main features of simple structures.	
- Fundamentals of hydrology (water circulation, soil moist	ure regime, groundwater, flood routing), water ecology
- Fundamentals of water management planning and deve	lopment tasks
- Development of flowing waters	
- Weir and dam facilities	
- Navigable waterway construction facilities	
- Flood protection facilities	
Recommended Literature	
Wasserrahmenrichtlinie, Hamburg Giesecke, J.; Heimerl, S. (2013): Wasserkraftanlagen – F Lechler, K.; Lühr, HP., Zanke, U. (2015): Taschenbuch Patt, H.; Jüpner, R. (2013): Hochwasser-Handbuch – Aus Patt, H.; Jürging, P.; Kraus, W. (2011): Naturnaher Wass Verlag, Berlin, Heidelberg	der Wasserwirtschaft, Verlag Springer Vieweg, Wiesbaden swirkungen und Schutz, Springer Verlag, Berlin, Heidelberg erbau - Entwicklung und Gestaltung von Fließgewässern. Springer te von Fließgewässern - Grundlagen und Kartierung. Springer
Teaching and Learning Methods	
Lecture and Practical seminar (4 Hours per Week) Excursion (optional)	

Exam(s)

Precondition of Examination		
Type of Examination Duration of Examination (if written or oral exam)		
		Written Exam
Composition of Module Mark		
Mark of Exam		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Prerequisites include: knowledge and skills acquired in Engineering Mathematics, I, Engineering Mathematics II and Technical Mechanics (recommended). Engineering Mathematics I must be completed (mandatory). Applicability of Module Frequency of Offering every Summer Semester Course Language

valid from	valid to	last updated
Winter Semester 16/17		30.10.2018

Mad		Cord
IVIOU	ule	Card

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-501	CAE	С	5	Prof. DrIng. Frank Wellershoff

Subject Area	Duration	
Structural Engineering		1 Semester
CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
5 CP (= 150 h Workload) 4 (= 42 h Contact Time)		108 h

Dbjective of Qualification (competencies)
Efficient and effective use of high-quality CAD software. This requires an understanding of the mathematical description of complex geometries (NURBS) as well as methods of parameterization.
Controlled data interchange between a CAD program and frame design software
Confident use of complex frame design software. This requires working knowledge of numerical computerized techniques (calculation algorithms) as well as how to evaluate results.
Contents
Introduction to CAD software: Learning and deepening the grasp of fundamentals and basic drawing comments, drawing design and data backup and data transfer to frame design software
Introduction to frame design software: Theory of consistent deformations method, theory I, II and III. order, theory of calculation algorithms, input, monitoring and editing a CAD model, frame design model setup, creating load cases and load case combinations for measuring fitness for use and load-bearing capacity, selection of calculation parameters, readouts, checking and reading program messages and calculation results, creation of documented and verifiable statics
Recommended Literature
Pottmann et. al.: Architekturgeometrie, Springer Verlag Ielmut Schober: Transparente Schalen, Ernst & Sohn Verlag Tedeschi: Parametric Architecture with Grashopper, Le Penseur Jumpe; Gensichen: Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software, Ernst & Sohn Verlag
eaching and Learning Methods
Seminar (4 Hours per Week) in Computer-Pool

Exam(s)

Precondition of Examination		
Type of Examination	Duration of Examination (if written or oral exam)	
Term Paper The term paper consists of subtasks worked on throughout the semester. Re-Examination in Summer Semester is a Written Exam (120 Minutes).		
Composition of Module Mark The highest mark for the term paper is 100 points. It determines students' overall mark.		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Prerequisites include: Technical Mechanics, Building Construction and CAD (mandatory), Static of Structures (recommended).

Applicability of Module

Frequency of Offering

Course Language	
German	

valid from	valid to	last updated
Winter Semester 15/16		04.12.2019

Bachelor Civil E	Engineering
HCI	U Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-502	Construction Management	C	5 + 6	Prof. DrIng. Peter- Matthias Klotz
Subject Area			Duration	
Construction Management			2 Semester	

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
7,5 CP (= 225 h Workload)	6 (= 63 h Contact Time)	162 h

Module Card

Objective of Qualification (competencies)
Students will acquire basic knowledge in the subject areas of building industry and construction management. They will be able to plan, manage and carry out construction projects.
Contents
Construction Management and Operations I:
 Building industry: Business-management basics, operational accounting, finances, operating taxes, operational insurance, working groups Site management: Site facilities, construction equipment and construction methods, formwork and scaffolding Safety technology: A certificate can be earned in accordance with RAB 30, annex B, "Occupational Safety and Health Proficiency," as well as the knowledge and skills for branch-specific training as an occupational health and safety practitioner, Level III, P V "building sector."
Construction Management and Operations II:
 Scheduling Specification of services: Model format for building services specifications, standard service catalog, freestyle texts with German Construction Contract Procedures (VOB) Construction price calculation: Setup, execution, budgeting and cost processing
Recommended Literature
Detailed information (i.e. relevance, availability in the library) will be given in the first class meeting. Krause: Zahlentafeln für den Baubetrieb Berner: Grundlagen der Baubetriebslehre Krause: Beispiele für die Baubetriebspraxis Schach: Baustelleneinrichtung
Feaching and Learning Methods
Construction Management I, 5 CP: Lecture and Practical Seminar (4 Hours per Week), Excursion (optional) Construction Management II, 2,5 CP: Lecture (2 Hours per Week), Exkursion (optional)

Exam(s)

Precondition of Examination		
passed Pre-Assignment		
Type of Examination	Duration of Examination (if written or oral exam)	
Construction Management I: Pre-Assignment: Exam in Safety Engineering Construction Management I+II (module): Term Paper,		
Composition of Module Mark		
Mark of Term Paper		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Applicability of Module

Frequency of Offering		
Construction Management I: every Winter Semester Construction Management II: every Summer Semester		
Course Language		
German		
valid from	valid to	last updated

01.11.2018

Winter Semester 15/16

Bachelor Civil Engineering
HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-503	Transport Planning and Traffic Infrastructure	С	5	Prof. DrIng. Martin Jäschke
	Subject Area			Duration
	Technical Infrastructure			
	Technical Infrastructure			2 Semester
	Technical Infrastructure			2 Semester
CP (a	Technical Infrastructure ccording to ECTS)		Hours/Week (SWS)	2 Semester Self-study

Module Card

Objective of Qualification (competencies)
Knowing, understanding and using the basic principles and interrelations of road and railway transportation
Contents
 Transport Planning and Infrastructure I: Basic principles of transport: Mobility and transport, spatial development and transport; ecological, social and economic effects and interdependency, assessment methods, selection, emissions prevention and reduction, main focus: noise Designing road transportation sites: Traffic surveys, prognoses, distribution (modal split) and assignment; calculating junctions, manual and compu-ter-assisted; elements of design, site plan, topographic map and cross section; optical range analysis;substantiation of transport quality; road drainage; cross section design; bicycle traffic; stationary traffic Transport Planning and Infrastructure II: Road construction and maintenance as well as road design, out of town: Road surface construction codes, stresses and strains, dimensioning and building techniques; building methods of federal highways and municipal roads; road maintenance and the pavement management system (PMS); Design of highways and country roads, site plan, longitudinal profiles, curvature string and cross-fall string Designing railway sites, railway construction and operation: Legal foundations; road and vehicle interaction; standard operating procedure; occupational safety and safety measures; railway operation and timetable; planning and building railway systems; crossings
Recommended Literature
Becker: Grundwissen Verkehrsökologie; Steierwald: Stadtverkehrsplanung; Lippold: Der Elsner 20xx; Matthews: Bahnbau; Pachl: Systemtechnik des Schienenverkehrs; Internet: FGSV, BASt, UBA, EBA
Teaching and Learning Methods
Transport Planning and Traffic Infrastructure I, 5 CP: Lecture and Practical Seminar (4 Hours per Week), Excursion (optional) Transport Planning and Traffic Infrastructure II, 5 CP: Lecture and Practical Seminar (4 Hours per Week), Excursion (optional)

Exam(s)

Precondition of Examination	
Type of Examination	Duration of Examination (if written or oral exam)
Transport Planning and Traffic Infrastructure I+II (module): Written Exam	3 h
Composition of Module Mark	
Mark of Exam	

Previous Knowledge / Conditions for Participation (in form and content)
Applicability of Module
Frequency of Offering

Transport Planning and Traffic Infrastructure I: every Winter Semester Transport Planning and Traffic Infrastructure II: every Summer Semester Course Language German

valid from	valid to	last updated
Winter Semester 16/17		14.12.2018

Bachelor C	ivil Engineering
	HCU Hamburg

Module Card Type (C/CE/E) Module Number Modul Name Semester Module Coordinator (proposed) BIW-B-Mod-506 Surveying Engineering С 5+6 Prof. Dr.-Ing. Harald Sternberg

Subject Area	Duration	
Surveying Engineering		2 Semester
CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
2 x 2,5 CP (= 2 x 75 h Workload)	2 x 2 (= 2 x 21 h Contact Time)	2 x 54 h

Objectives and Contents

•
Objective of Qualification (competencies)
- Basic principles in understanding and implementing simple surveying techniques
- Simple position and height measurements
- Necessary calculation, analysis and representation methods in surveying technology
Contents
- Geodesy (from GEO-B-Mod-101)
- Survey of Geomatic Engineering, history, standardizations (DIN, SI), reference and coordinate systems, height reference surfaces, using levels and optical plummets (leveling and centering), basic measuring techniques (orthogonal, polar, simple leveling)
- Geodesy practical course
 Fundamentals of coordinate and height systems Using instruments: leveling, optical-mechanical theodolites, electronic tachymeters Position measurement: orthogonal and polar techniques Height measurement: geometric and trigonometric leveling
Recommended Literature
Witte, B., Sparla, P.: Vermessungskunde und Grundlagen der Statistik für das Bauwesen (8. Auflage, 2015) Möser, Hoffmeister, Müller, Schlemmer, Staiger, Wanninger: Handbuch Ingenieurgeodäsie : Grundlagen (4. Auflage, 2012) Resnik, B., Bill, R.:Vermessungskunde für den Planungs-, Bau- und Umweltbereich (3. Auflage, 2009) Kahmen, H.: Angewandte Geodäsie: Vermessungskunde (20. Auflage, 2005)
Teaching and Learning Methods
Geodesy I, 2,5 CP: Lecture (2 Hours per Week) Practical Course Geodesy, 2, 5 CP:Ppractical Course (2 Hours per Week) Excursion (optional)

Exam(s)

Precondition of Examination		
Compulsory Attendance in Practical Course 80%		
Type of Examination	Duration of Examination (if written or oral exam)	
Geodesy I: Written Exam Practical Course Geodesy: Term Paper, Colloquium	Written Exam 1,5 h	
Composition of Module Mark		
50% Written Exam Geodesy I and 50% Term Paper		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

For the internship in the 6th semester participation in the theoretical part of Geodesy 1 is required in the 5th semester (mandatory).

Applicability of Module

Frequency of Offering

Geodesy I: every Winter Semester Practical Course Geodesy: every Summer Semester

Course Language

German

valid from	valid to	last updated
Summer Semester 2017		01.11.2018

Mod	Card
IVIOU	Uaru

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-601	Thesis (ASPO 2015)	С	6	Prof. DrIng. Annette Bögle
	Subject Area			Duration
Thesis		1 Semester		

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
10 CP (= 300 h Workload)		300 h

Objective of Qualification (competencies)
The bachelor's thesis is an examination paper. It will demonstrate the candidate's ability to work through a problem in civil engineering independently, according to scientific methods and by a predetermined deadline.
Contents
The exam consists of a problem from the bachelor's curriculum in civil engineering. The first examiner will hand out the topic.
Recommended Literature
Varies by subject
Teaching and Learning Methods
Independent Written Term Paper For further information, see "Informationen zur Bachelor-/Masterthesis" on the homepage

Exam(s)

Precondition of Examination		
Preconditions for the examination paper are stipulated in the g Hamburg.	general and degree-specific examination regulations of HCU	
Type of Examination	Duration of Examination (if written or oral exam)	
Thesis 2 copies (each with a hard copy and a digital copy on CD)	12 Weeks	
Composition of Module Mark		
Thesis mark worth 100% (first and second examiners' marks each comprise one half of	the evaluation)	

Previous Knowledge / Conditions for Part	icipation (in form and content)	
Applicability of Module		
Frequency of Offering		
any time		
Course Language		
German		
valid from	valid to	last undated

valid from	valid to	last updated
Winter Semester 15/16		25.09.2018

Bachelor	Civil Engineering
	HCU Hamburg

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-604	Sanitary Environmental Engineering	С	6	Prof. DrIng. Wolfgang Dickhaut
Subject Area		Duration		
Structural Engineering				1 Semester
CP (according to ECTS) Contact		Hours/Week (SWS)	Self-study	
5 CP (= 150 h Workload)		4 (= 4	2 h contact time)	108 h

Module Card

Objective of Qualification (competencies)	
- Knowledge about fundamental problems concerning sanitary environmental engineering, methods of resolution	iti-on and systems
- Ability to calculate simple property and district related measurings	

Contents

- Basics of Sanitary Environmental Engineering: Strategies of a sustainable Sanitary Environmental Engineering; Biological, chemical and hydraulic basics; Legal requirements: objectives from the perspective of water protection, water quality, waste-water and rain-water inflow and discharge, quality and quantity, drainage processes
- Systems of Sanitary Environmental Engineering on regional and urban level: (operating modes, techniques/materials, measurement basis), water supply (e.g. requirements, supply, sup-port, cleaning, distribution) an overview; sewage disposal: systems for rainwater usage (mixed and seperate sewer system operating principle; systems e.g. sewer system, pump stations, stormwater overflow and a stormwater tank) planning and calculation; sewage treatment: systems for waste water cleaning/sewage tre-atment plants (development of mechanical and biological cleaning, e.g. preclarification, revival, elimination of phosphate, Secondary clarification) an overview
- Systems of Sanitary Environmental Engineering on district and property level: (operating modes, techniques/materials, measurement basis) planning and calculation; decentralized rainwa-ter usage (e.g. evaporation, infiltration, retention, usage); waste water cleaning (decentralized systems, e.g. separation and treatment of material flow, grey water recycling, planted soil filters)

Recommended Literature

DWA_Regelwerke Gujer, Willi; Siedlungswasserwirtschaft; 2006

Teaching and Learning Methods

Lecture and Practical Seminar (4 Hours per Week) Excursion (optional)

Exam(s)

Precondition of Examination	
Type of Examination	Duration of Examination (if written or oral exam)
Written Exam	2 h
Composition of Module Mark	
Mark of Exam	

Previous Knowledge / Conditions for Participation (in form and content)
This module builds on knowledge acquired in the module Hydraulic Engineering (recommended).
Applicability of Module
Frequency of Offering
every Summer Semester

Course Language			
German			
valid from valid to last updated			

01.11.2018

Winter Semester 16/17

Mad		Cord
IVIOU	ule	Card

Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BIW-B-Mod-605	Elective	CE	5	Prof. DrIng. Annette Bögle
Subject Area			Duration	
Compulsory Elective			1 Semester	
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study		

CF (according to ECTS)		Self-Sludy
5 CP (= 150 h Workload) or 2 x 2,5 CP (= 2 x 75 h Workload)	4 (= 42 h Contact Time) or 2 x 2 (= 2 x 21 h Contact Time)	108 h or 2 x 54 h

Objective of Qualification	(competencies)
----------------------------	----------------

- Increasing breadth and depth of particular disciplinary knowledge

- Profiling the personal portfolio

Contents

- A course worth 5 CP is to be chosen from the catalog of mandatory electives for the civil engineering program. OR

- Two courses worth 2.5 CP each are to be chosen from the catalog of mandatory electives for the civil enginee-ring program.

Recommended Literature

Varies by course

Teaching and Learning Methods

Lecture + Practical Course (4 Hours per Week or 2 x 2 Hours per Week) Excursion (optional)

Exam(s)

Precondition of Examination	
Varies by course	
Type of Examination	Duration of Examination (if written or oral exam)
Varies by course	
Composition of Module Mark	
Varies by type of examination	

Previous Knowledge / Conditions for Participation (in form and content)		
To be determined by the teacher of the course		
Applicability of Module		
Frequency of Offering		
every Semester		
Course Language		
German		

valid from	valid to	last updated
Winter Semester 15/16		30.10.2018

Module Card Type (C/CE/E) Prof. Dr. Ingrid Breckner / Prof. Bernd Kniess; Prof. Dr. Monika Grubbauer / BS-B-Mod-001 BASICS: concepts & methodology С each semester Prof. Dr. Thomas

		Schramm
Subject Area	Duration	
Fachübergreifende Studienangebote (FaSt)/cross-curricular Programme		2 Semester
CP (according to ECTS) Contact Hours/Week (SWS)		Self-study
5 CP (= 150 h Workload)	4 (= 42 h contact time)	108 h

Objectives and Contents

-
Objective of Qualification (competencies)
 1) BASICS: Theoretical, Conceptional basics (WiSe) Students gain a general overview on avernessleading questions, paradigm and axioms through the three main knowledge cultures at the HCU: engineering and natural science ecomomics, social and cultural science creation and design
2) BASICS: Methodological Basics of the HCU-studyprogram in research and design (SoSe) The lecture introduces the methodological basics of the different disciplines and comprises reseach as well as artistic and technological design of architecture and metropolis developement.
Contents
 1) BASICS: Theoretical, Conceptional Basics Introduction tot he 3 knowledge cultures at the HCU engineering and natural science ecomomics, social and cultural science Architectur and Design Revision course
 2) BASICS: Methodological Basics of the HCU-studyprogram in research and design Introduction tot he methodology: research and design Semantics and Syntax Methodical approach to designing research Methodical approach to researching design
Recommended Literature
will be announced in the lecture
Teaching and Learning Methods
2 lectures (2,5 CP; 2 SWS)

Exam(s)

Precondition of Examination	
none	
Type of Examination	Duration of Examination (if written or oral exam)
1) exam / docmentation 2) exam / docmentation	1) 90 min./n.i. 2) 90 min./n.i.
Composition of Module Mark	
1) 50% 2) 50%	

Previous Knowledge / Conditions for Participation (in form and content)				
none				
Applicability of Module				
Frequency of Offering	Frequency of Offering			
1) Each winter term 2) each summer term				
Course Language				
German				
valid from valid to last updated				
WiSe 16/17		19.10.2018		

odule Card Bachelor FaSt HCU Hamburg				Bachelor FaSt HCU Hamburg
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
BS-B-Mod-002	BASICS: History	С	Winter Term	Prof. Dr. Annette Bögle / Prof. Dr. Jörn Düwel/ Prof. Dr. Monika Grubbauer
Subject Area			Duration	
Fachübergreifende Studienangebote (FaSt)/cross-curricular Programm			1 Semester	

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
2,5 CP (= 75 h Workload)	2 (= 21 h contact time)	54 h

Objective of Qualification (competencies)

a) BASICS: History and Theory of the City (Prof. Dr. Monika Grubbauer)

Understanding of the historically specific relation between cities and societies and the resulting economic, social and cultural processes of urban transformation

Familiarity with key theories and debates on how to conceptualize cities and urban processes Knowledge of the key phases, figures and projects of urban design and plannin

b>g

b) BASICS: History of Architecture and Structural Design (Prof. Dr. Annette Bögle, Prof. Dr. Jörn Düwel)

Understanding of the principle historic developments of architecture and the art of structural engineering Understanding of the interaction between form and structure in correlation to social and technical developments Knowledge of the key phases, figures and projects of architecture and structural and civil engineering

Contents

a) BASICS: History and Theory of the City

Key questions to be addressed include:

What are cities, and how and why do they change?

How can we conceive of the interdependencies between social processes and built structures in the city? How have design and planning interventions in the city evolved in terms of changing sites and targets, goals and ideologies? How are these key episodes in the development of cities in different geographical contexts linked to broader economic, social and cultural transformations?

b) BASICS: History of Architecture and Structural Design

Key questions to be addressed include:

Examples of architectural milestones from the ancient world to the actual architecture

Examples of key structures from the ancient world to actual engineering structures

Interaction of architecture and structural design

Development of engineering sciences

The industrial revolution and the development of new building materials (iron, steel, concrete) and new forms The paradigm of light structures

The second industrial revolution: the digitalization of the design and realization process

Recommended Literature

Literature will be announced in the lecture

Teaching and Learning Methods

Lecture (2,5 CP; 2 SWS)

Exam(s)

Precondition of Examination	
Type of Examination	Duration of Examination (if written or oral exam)
a) Exam b) Exam	a) 90 min. b) 90 min.

Composition of Module Mark	
a) 100% b) 100%	

Previous Knowledge / Conditions for Participation (in form and content)				
None				
Applicability of Module				
Frequency of Offering				
Each Winter term				
Course Language				
English				
volid from	valid to	last undeted		

valid from	valid to	last updated
WiSe 15/16		25.09.2018

Bachelor FaSt
HCU Hamburg

39,3 h

Module Card Bachelor FaSt HCU Hamburg				
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
SK-B-Mod-001	Skills: Cross-disciplinary Qualifications and Competencies	С	1	Prof. Dr. Thomas Schramm
	Subject Area Duration			Duration
Fachübergreifende Studienangebote (Cross-curricular Programme)			1-2 Semester	
CP (according to ECTS) Contact Hours/Week (SWS)			Self-study	

CP (according to ECTS)	
2,5 (= 75 h Workload)	3,4 (= 35,7 h contact time)

Objectives and Contents

Objective of Qualification (compete	encies)
Competencies in scientific writing a Social, communicational competen life)	and studying access and self-competencies (improvement of the transition from university to professional
Contents	
Literature database und manageme Handling of scientific language and b) Skills competencies: Workshops ommunication competence Courses to improve skills in problem study techniques, presentation tech social competence Courses to improve skills in commu- teamwork, and marketing capabiliti self-competence	tion; structuring and presenting of scientific work ent software d quotation systems s for communication and social competencies and self-competences m solving, transferability, decision making, analysis, acquisition of knowledge, learning and hniques, documentation, time management unication and cooperation, negotiation, feedback, conflict management, motivational,
Recommended Literature	
Teaching and Learning Methods	
a) What is science and scientific we Lecture, tutorial á 1 SWS, 1 CP (10 b) social, conmunication and selfco 3 practices á 0,5 CP (mostly blocks	0,5 h contact time)

Exam(s)

Precondition of Examination		
 a) mandatory attendance, active participation (exercises for the beginning) b) the type of examination will be announced in the beginning 		
Type of Examination	Duration of Examination (if written or oral exam)	
 active participation (accompanying online exer-cises in ecture and online course) mandatory attendance 		
Composition of Module Mark		

Previous Knowledge / Conditions for Participation (in form and content)	
none	
Applicability of Module	

Frequency of Offering

a.) each winter semester

b) each summer semester

Course Language

German

valid from	valid to	last updated
WiSe 15/16		07.05.2019

Module Carc	1			Bachelor FaSt HCU Hamburg	
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator	
SK-B-Mod-002 (BIW)	Skills: Instruments for Analysis and Visualization	CE	2 + 3	Prof. Dr. rer. nat. Thomas Schramm, DiplIng. Jens Köster	
Subject Area				Duration	
Interdisciplinary Studies			2 Semester		
CP (according to ECTS) Contact Hours/Week (SWS)			Self-study		
2 x 2,5 CP (= 2 x 75 Std. Workload) 2 x 2 (= 2 x 21 h Contact Time)			x 21 h Contact Time)	2 x 54 h	

Objectives and Contents

objectives and contents
Objective of Qualification (competencies)
 SKILLS (selectable): Interdisciplinary competences in analysis and visualization to understand and design urban environment Computer Science: Calculation and visualization by spreadsheets Solution of simple programming tasks Simple calculations with statics programs
Contents
 SKILLS (selectable): Teaching of instruments for analysis and visualization, e.g.: Typical design software like adobe photoshop, InDesign, Illustrator CAD Geo-information systems Film Foto and others Computer Science: Introduction to Excel: Learning and improvement of basic calculation functions, presentation of results in diagrams Introduction to VBA: development of functions and programs Introduction to programs for shell structures as well as a common statics program: entering of systems and loads, calculation of cut sizes and deformation
Recommended Literature
Computer Science: Excel und VBA (Verlag Springer Vieweg) Excel 20113 – Automatisierung und Programmierung (RRZN-Handbuch Leibniz Universität Hannover)
Teaching and Learning Methods
SKILLS (selectable), 2,5 CP: Seminar (2 Hours per Week) / Excursion (optional) Computer Science, 2,5 CP: Practical course (2 Hours per Week) in Computer Pool
Exam(s)

Precondition of Examination		
Compulsory Attendance 80%		
Type of Examination Duration of Examination (if written or oral exam)		
SKILLS (selectable): varies by course Computer Science: Written Exam	Computer Science: Written Exam 1,5 h	
Composition of Module Mark		
Mark of Exam Comuter Science 50%, Mark of Skills (selectable) 50%		

Additional Information

Previous Knowledge / Conditions for Participation (in form and content)

Computer Skills			
Applicability of Module			
Frequency of Offering			
every Winter Semester			
Course Language			
German			
valid from	valid to	last updated	
Winter Semester 15/16		18.03.2019	

Bachelor FaSt
HCU Hamburg

Module Card				Bachelor FaSt HCU Hamburg
Module Number	Modul Name	Type (C/CE/E)	Semester (proposed)	Module Coordinator
Q-B-Mod-001/002	[Q] STUDIES	С	each Semester	Prof. Dr. Thomas Schramm
Subject Area			Duration	
Fachübergreifende Studienangebote (FaSt) /cross-curricular Programme			1 Semester	

CP (according to ECTS)	Contact Hours/Week (SWS)	Self-study
5 CP (= 150 h Workload)	4 (= 42 h contact time)	108 h

Objective of Qualification (competencies)
 Reflection competencies: scientific analysis and reflection Cultural competencies: transdisciplinary and intercultural communication Perception and design competencies: creative and innovative design The ability to act: proactive and responsible action
Contents
 a) [Q] STUDIES I Different courses with theoretical emphasis Opportunities to train the perception and creativity through Practical project work such as the development of course concepts and their implementation b) [Q] STUDIES II see above Fields of Study: Science Technology Knowledge Media Art Culture Economy Politics Society
Recommended Literature
will be announced in the lecture
Teaching and Learning Methods
2x seminar / lecture + tutorial / project (2x 2,5 CP; 2x 2 SWS) Excursion (optional)

Exam(s)

Precondition of Examination		
80% participation, active participation, accompanying as-signments		
Type of Examination Duration of Examination (if written or oral exam)		
to be defined by each teacher and course		
Composition of Module Mark		
2 x 50%		

Previous Knowledge / Conditions for Participation (in form and content)		
none		
Applicability of Module		
Frequency of Offering		
each Semester		
Course Language		
German and english		

valid from	valid to	last updated
WiSe 15/16		18.03.2019